Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

DeepFuzz: Triggering Vulnerabilities Deeply Hidden in Binaries

(Extended Abstract)

  • Conference paper
  • First Online:

Abstract

We introduce a new method for triggering vulnerabilities in deep layers of binary executables and facilitate their exploitation. In our approach we combine dynamic symbolic execution with fuzzing techniques. To maximize both the execution path depth and the degree of freedom in input parameters for exploitation, we define a novel method to assign probabilities to program paths. Based on this probability distribution we apply new path exploration strategies. This facilitates payload generation and therefore vulnerability exploitation.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M., Brumley, D.: Automatic exploit generation. Commun. ACM57(2), 74–84 (2014)

    Article  Google Scholar 

  2. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later. Commun. ACM56(2), 82–90 (2013)

    Article  Google Scholar 

  3. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In: Proceedings of the 2012 International Symposium on Software Testing and Analysis, pp. 166–176. ACM (2012)

    Google Scholar 

  5. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: ACM SIGPLAN Notices, vol. 40, pp. 213–223. ACM (2005)

    Google Scholar 

  6. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security testing. Commun. ACM55(3), 40–44 (2012)

    Article  Google Scholar 

  7. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: NDSS, vol. 8, pp. 151–166 (2008)

    Google Scholar 

  8. Majumdar, R., Sen, K.: Hybrid concolic testing. In: 29th International Conference on Software Engineering, 2007, ICSE 2007, pp. 416–426. IEEE (2007)

    Google Scholar 

  9. Saudel, F., Salwan, J.: Triton: a dynamic symbolic execution framework. In: Symposium sur la sécurité des technologies de l’information et des communications, SSTIC, France, Rennes, 3–5 June 2015, pp. 31–54. SSTIC (2015)

    Google Scholar 

  10. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: European Software Engineering Conference, pp. 263–272 (2005)

    Google Scholar 

  11. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Driller: augmenting fuzzing through selective symbolic execution. In: Proceedings of the Network and Distributed System Security Symposium (NDSS) (2016)

    Google Scholar 

  12. Takanen, A., Demott, J.D., Miller, C.: Fuzzing for Software Security Testing and Quality Assurance. Artech House, Norwood (2008)

    MATH  Google Scholar 

  13. Xie, T., Tillmann, N., De Halleux, J., Schulte, W.: Fitness-guided path exploration in dynamic symbolic execution. In: IEEE/IFIP International Conference on Dependable Systems and Networks DSN 2009, pp. 359–368. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Fraunhofer Institute for Applied and Integrated Security, 85748, Garching (near Munich), Germany

    Konstantin Böttinger & Claudia Eckert

Authors
  1. Konstantin Böttinger

    You can also search for this author inPubMed Google Scholar

  2. Claudia Eckert

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toKonstantin Böttinger.

Editor information

Editors and Affiliations

  1. IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain

    Juan Caballero

  2. Mondragon University, Arrasate, Guipúzcoa, Spain

    Urko Zurutuza

  3. Universidad de Zaragoza, Zaragoza, Spain

    Ricardo J. Rodríguez

Rights and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Böttinger, K., Eckert, C. (2016). DeepFuzz: Triggering Vulnerabilities Deeply Hidden in Binaries. In: Caballero, J., Zurutuza, U., Rodríguez, R. (eds) Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2016. Lecture Notes in Computer Science(), vol 9721. Springer, Cham. https://doi.org/10.1007/978-3-319-40667-1_2

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp