Part of the book series:Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 102))
Abstract
Nature, the most prolific source of biological and chemical diversity, has provided mankind with treatments for health problems since ancient times and continues to be the most promising reservoir of bioactive chemicals for the development of modern drugs. In addition to the terrestrial organisms that still remain a promising source of new bioactive metabolites, the marine environment, covering approximately 70% of the Earth’s surface and containing a largely unexplored biodiversity, offers an enormous resource for the discovery of novel compounds. According to theMarinLit database, more than 27,000 metabolites from marine macro- and microorganisms have been isolated to date providing material and key structures for the development of new products in the pharmaceutical, food, cosmeceutical, chemical, and agrochemical sectors. Algae, which thrive in the euphotic zone, were among the first marine organisms that were investigated as sources of food, nutritional supplements, soil fertilizers, and bioactive metabolites.
Red algae of the genusLaurencia are accepted unanimously as one of the richest sources of new secondary metabolites. Their cosmopolitan distribution, along with the chemical variation influenced to a significant degree by environmental and genetic factors, have resulted in an endless parade of metabolites, often featuring multiple halogenation sites.
The present contribution, covering the literature until August 2015, offers a comprehensive view of the chemical wealth and the taxonomic problems currently impeding chemical and biological investigations of the genusLaurencia. Since mollusks feeding onLaurencia are, in many cases, bioaccumulating, and utilize algal metabolites as chemical weaponry against natural enemies, metabolites of postulated dietary origin of sea hares that feed onLaurencia species are also included in the present review. Altogether, 1047 secondary metabolites, often featuring new carbocyclic skeletons, have been included.
The chapter addresses: (1) the “Laurencia complex”, the botanical description and the growth and population dynamics of the genus, as well as its chemical diversity and ecological relations; (2) the secondary metabolites, which are organized according to their chemical structures and are classified into sesquiterpenes, diterpenes, triterpenes, acetogenins, indoles, aromatic compounds, steroids, and miscellaneous compounds, as well as their sources of isolation which are depicted in tabulated form, and (3) the biological activity organized according to the biological target and the ecological functions ofLaurencia metabolites.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 17159
- Price includes VAT (Japan)
- Softcover Book
- JPY 21449
- Price includes VAT (Japan)
- Hardcover Book
- JPY 21449
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
WHO (2013) WHO traditional medicine strategy: 2014–2023. World Health Organization, Geneva
Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. Bull World Health Org 63:965
Pascolutti M, Quinn RJ (2014) Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov Today 19:215
Cragg GM, Newman DJ (2005) International collaboration in drug discovery and development from natural sources. Pure Appl Chem 77:1923
Bergmann W, Burke DC (1955) Contribution to the study of marine products. XXXIX. The nucleosides of sponges. III. Spongothymidine and spongouridine. J Org Chem 20:1501
MarinLit (2015) http://pubs.rsc.org/marinlit. Royal Society of Chemistry, London
Sze P (1993) A biology of the algae. Wm. C Brown Publishers, Dubuque, IA
Darley WM (1982) Algal biology: a physiological approach. In: Wilkinson JF (ser ed) Basic microbiology, vol 9. Blackwell Scientific Publications, Oxford, UK
Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116, and previous reviews in this series
Erickson KL (1983) Constituents ofLaurencia. In: Scheuer PJ (ed) Marine natural products: chemical and biological perspectives, vol V. Academic Press, New York, p 131
Kladi M, Vagias C, Roussis V (2004) Volatile halogenated metabolites from marine algae. Phytochem Rev 3:337
Wang BG, Gloer JB, Ji NY, Zhao JC (2013) Halogenated organic molecules of Rhodomelaceae origin: chemistry and biology. Chem Rev 113:3632
Ji NY, Wang BG (2014) Nonhalogenated organic molecules fromLaurencia algae. Phytochem Rev 13:653
Gribble GW (2010) Naturally occurring organohalogen compounds – a comprehensive update. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 91. Springer, Wien, and previous reviews in this series
Guiry MD in Guiry MD, Guiry GM (2015) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.http://www.algaebase.org. August 2015
Cabrita MT, Vale C, Pilar A (2010) Halogenated compounds from marine algae. Mar Drugs 8:2301
Cassano V, Oliveira MC, Gil-Rodríguez MC, Sentíes A, Díaz-Larrea J, Fujii MT (2012) Molecular support for the establishment of the new genusLaurenciella within theLaurencia complex (Ceramiales, Rhodophyta). Bot Mar 55:349
Martin-Lescanne J, Rousseau F, De Reviers B, Payri C, Couloux A, Cruaud C, Le Gall L (2010) Phylogenetic analyses of theLaurencia complex (Rhodomelaceae, Ceramiales) support recognition of five genera:Chondrophycus,Laurencia,Osmundea,Palisada andYuzurua stat. nov. Eur J Phycol 45:51
Saito Y (1967) Studies on Japanese species ofLaurencia, with special reference to their comparative morphology. Mem Fac Fish Hokkaido Univ 15:1
Nam KW, Maggs CA, Garbary DJ (1994) Resurrection of the genusOsmundea with an emendation of the generic delineation ofLaurencia (Ceramiales, Rhodophyta). Phycologia 33:384
Garbary DJ, Harper JT (1998) A phylogenetic analysis of theLaurencia complex (Rhodomelaceae) of the red algae. Cryptogamie Algol 19:185
Nam KW (1999) Morphology ofChondrophycus undulata andC. parvipapillata and its implications for the taxonomy of theLaurencia (Ceramiales, Rhodophyta) complex. Eur J Phycol 35:455
Nam KW (2006) Phylogenetic re-evaluation of theLaurencia complex (Rhodophyta) with a description ofL. succulenta sp. nov. from Korea. J Appl Phycol 18:679
Kylin H (1956) Die Gattungen der Rhodophyceen. CWK Gleerups Forlag, Lund, Sweden
McDermid KJ (1988) Section V.Laurencia (Rhodophyta, Rhodomelaceae). In: Abbott IA (ed) Taxonomy of economic seaweeds, with reference to some Pacific and Caribbean species, vol 2. California Sea Grant College Program, La Jolla, CA
Harper JT, Garbary DJ (1997) Marine algae of Northern Senegal: the flora and its biogeography. Bot Mar 40:129
Serio D, Cormaci M, Furnari G (1999)Osmundea maggsiana sp. nov. (Ceramiales, Rhodophyta) from the Mediterranean Sea. Phycologia 38:277
Nam KW, Choi HG (2000) A detailed morphological study of the type species ofOsmundea (Rhodomelaceae, Rhodophyta). Bot Mar 43:291
Yoneshigue-Valentin Y, Fujii MT, Gurgel CFD (2003)Osmundea lata (M. Howe & W.R. Taylor) comb. nov. (Ceramiales, Rhodophyta) from the Brazilian south-eastern continental shelf.Phycologia 42:301
Fenical W, Norris JN (1975) Chemotaxonomy in marine algae: chemical separation of someLaurencia species (Rhodophyta) from the Gulf of California. J Phycol 11:104
Masuda M, Abe T, Suzuki T, Suzuki M (1996) Morphological and chemotaxonomic studies onLaurencia composita andL. okamurai (Ceramiales, Rhodophyta). Phycologia 35:550
Barrow KD, Karsten U, King RJ, West JA (1995) Floridoside in the genusLaurencia (Rhodomelaceae: Ceramiales) – a chemosystematic study. Phycologia 34:279
Fujii MT, Cassano V, Stein ÉM, Carvalho LR (2011) Overview of the taxonomy and of the major secondary metabolites and their biological activities related to human health of theLaurencia complex (Ceramiales, Rhodophyta) from Brazil. Braz J Pharmacogn 21:268
Fujii MT, Cassano V, Sentíes A, Díaz-Larrea J, Machín-Sánchez M, Candelaria Gil-Rodríguez M (2012) Comparative analysis of the corps en cerise in several species ofLaurencia (Ceramiales, Rhodophyta) from the Atlantic Ocean. Braz J Pharmacogn 22:795
Kuwano K, Matsuka S, Kono S, Ninomiya M, Onishi J, Saga N (1998) Growth and the content of laurinterol and debromolaurinterol inLaurencia okamurai (Ceramiales, Rhodophyta). J Appl Phycol 10:9
Bischoff-Bäsmann B, Bartsch I, Xia B, Wiencke C (1997) Temperature responses of macroalgae from the tropical island Hainan (P.R. China). Phycol Res 45:91
Horta PA, Vieira-Pinto T, Martins CDL, Sissini MN, Ramlov F, Lhullier C, Scherner F, Sanches PF, Farias JN, Bastos E, Bouzon JL, Munoz P, Valduga E, Arantes NP, Batista MB, Ruil P, Almeida RS, Paes E, Fonseca A, Schenkel EP, Rorig L, Bouzon Z, Barufi JB, Colepicolo P, Yokoya N, Copertino MS, de Oliveira EC (2012) Evaluation of impacts of climate change and local stressors on the biotechnological potential of marine macroalgae - a brief theoretical discussion of likely scenarios. Braz J Pharmacogn 22:768
Rodrigues CL, Caeiro S, Raikar SV (1997) Marine macrophyte communities on the reef flat at Agatti Atoll (Lakshadweep, India). Bot Mar 40:557
Jadeja RN, Tewari A (2011) Impact of discharge of soda ash industry effluent on abundance and community structure of rocky intertidal macroalgae of the Arabian Sea, Gujarat, India. Ind J Geo-Mar Sci 40:71
Turna II, Ertan ÖO, Cormaci M, Furnari G (2002) Seasonal variations in the biomass of macro-algal communities from the gulf of Antalya (north-eastern Mediterranean). Turk J Bot 26:19
Díez I, Secilla A, Santolaria A, Gorostiaga JM (1999) Phytobenthic intertidal community structure along an environmental pollution gradient. Mar Pollut Bull 38:463
Nonomura AM, West JA (1980) Ultrastructure of the parasiteJanczewskia morimotoi and its hostLaurencia nipponica (Ceramiales, Rhodophyta). J Ultrastruct Res 73:183
Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103
Kilar JA, Lou RM (1984) Ecological and behavioral studies of the decorator crab,Microphrys bicornutus Latreille (Decapoda: Brachyura): a test of optimum foraging theory. J Exp Mar Biol Ecol 74:157
Kilar JA, Lou RM (1986) The subtleties of camouflage and dietary preference of the decorator crab,Microphrys bicornutus Latreille (Decapoda: Brachyura). J Exp Mar Biol Ecol 101:143
Stoner AW, Waite JM (1991) Trophic biology ofStrombus gigas in nursery habitats: diets and food sources in seagrass meadows. J Mollusc Stud 57:451
Boettcher AA, Targett NM (1996) Induction of metamorphosis in queen conch,Strombus gigas Linnaeus, larvae by cues associated with red algae from their nursery grounds. J Exp Mar Biol Ecol 196:29
Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-William R, Beach KS (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107
Suenaga K (2004) Bioorganic studies on marine natural products with bioactivity, such as antitumor activity and feeding attractance. Bull Chem Soc Jpn 77:443
Wessels M, König GM, Wright AD (2000) New natural product isolation and comparison of the secondary metabolite content of three distinct samples of the sea hareAplysia dactylomela from Tenerife. J Nat Prod 63:920
Rogers CN, De Nys R, Charlton TS, Steinberg PD (2000) Dynamics of algal secondary metabolites in two species of sea hare. J Chem Ecol 26:721
Yamamura S, Hirata Y (1963) Structures of aplysin and aplysinol, naturally occurring bromo-compounds. Tetrahedron 19:1485
de Oliveira LS, Gregoracci GB, Silva GGZ, Salgado LT, Filho GA, Alves-Ferreira M, Pereira RC, Thomps FL (2012) Transcriptomic analysis of the red seaweedLaurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genomics 13:487
Faulkner DJ (1995) Chemical riches from the oceans. Chem Br 31:680
Butler A, Carter-Franklin JN (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep 21:180
Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem 284:18577
Carter-Franklin JN, Butler A (2004) Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J Am Chem Soc 126:15060
Suzuki M, Takahashi Y, Nakano S, Abe T, Masuda M, Ohnishi T, Noya Y, Seki K (2009) An experimental approach to study the biosynthesis of brominated metabolites by the red algal genusLaurencia. Phytochemistry 70:1410
Salgado LT, Viana NB, Andrade LR, Leal RN, da Gama BAP, Attias M, Pereira RC, Amado Filho GM (2008) Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red algaLaurencia obtusa. J Struct Biol 162:345
Suzuki M, Kurosawa E (1979) Halogenated and non-halogenated aromatic sesquiterpenes from the red algaeLaurencia okamurai Yamada. Bull Chem Soc Jpn 52:3352
Suzuki M, Kurosawa E, Kurata K (1987) (E)-2-Tridecyl-2-heptadecenal, an unusual metabolite from the red algaLaurencia species. Bull Chem Soc Jpn 60:3793
Vairappan CS, Suzuki M, Abe T, Masuda M (2001) Halogenated metabolites with antibacterial activity from the OkinawanLaurencia species. Phytochemistry 58:517
Reis VM, Oliveira LS, Passos RMF, Viana NB, Mermelstein C, Sant’Anna C, Pereira RC, Paradas WC, Thompson FL, Amado-Filho GM, Salgado LT (2013) Traffic of secondary metabolites to cell surface in the red algaLaurencia dendroidea depends on a two-step transport by the cytoskeleton. PloS One 8:e63929
Paradas WC, Salgado LT, Sudatti DB, Crapez MA, Fujii MT, Coutinho R, Pereira RC, Amado Filho GM (2010) Induction of halogenated vesicle transport in cells of the red seaweedLaurencia obtusa. Biofouling 26:277
de Nys R, Dworjanyn SA, Steinberg PD (1998) A new method for determining surface concentrations of marine natural products on seaweeds. Mar Ecol Prog Ser 162:79
Sudatti DB, Rodrigues SV, Pereira RC (2006) Quantitative GC-ECD analysis of halogenated metabolites: determination of surface and within-thallus elatol ofLaurencia obtusa. J Chem Ecol 32:835
Sudatti DB, Rodrigues SV, Coutinho R, da Gama BAP, Salgado LT, Amado Filho GM, Pereira RC (2008) Transport and defensive role of elatol at the surface of the red seaweedLaurencia obtusa (Ceramiales, Rhodophyta). J Phycol 44:584
Howard BM, Nonomura AM, Fenical W (1980) Chemotaxonomy in marine algae: secondary metabolite synthesis byLaurencia in unialgal culture. Biochem Syst Ecol 8:329
Masuda M, Kawaguchi S, Abe T, Kawamoto T, Suzuki M (2002) Additional analysis of chemical diversity of the red algal genusLaurencia (Rhodomelaceae) from Japan. Phycol Res 50:135
Sudatti DB, Fujii MT, Rodrigues SV, Turra A, Pereira RC (2011) Effects of abiotic factors on growth and chemical defenses in cultivated clones ofLaurencia dendroidea J. Agarth (Ceramiales, Rhodophyta). Mar Biol 158:1439
Oliveira AS, Sudatti DB, Fujii MT, Rodrigues SV, Pereira RC (2013) Inter- and intrapopulation variation in the defensive chemistry of the red seaweedLaurencia dendroidea (Ceramiales, Rhodophyta). Phycologia 52:130
de Carvalho LR, Farias JN, Riul P, Fujii MT (2015) An overview of global distribution of the diterpenes synthesized by the red algaeLaurencia complex (Ceramiales, Rhodomelaceae). In: Kim SK, Chojnacka K (eds) Marine algae extracts: processes, products, and applications. Wiley, Weinheim
Kokkotou K, Ioannou E, Nomikou M, Pitterl F, Vonaparti A, Siapi E, Zervou M, Roussis V (2014) An integrated approach using UHPLC-PDA-HRMS and 2D HSQC NMR for the metabolic profiling of the red algaLaurencia: dereplication and tracing of natural products. Phytochemistry 108:208
Ji N-Y, Li X-M, Li K, Ding L-P, Gloer JB, Wang B-G (2007) Diterpenes, sesquiterpenes, and a C15 acetogenin from the marine red algaLaurencia mariannensis. J Nat Prod 70:1901
Suzuki T, Furusaki A, Hashiba N, Kurosawa E (1977) Novel skeletal bromo ether from the marine algaLaurencia nipponica Yamada. Tetrahedron Lett 18:3731
Suzuki M, Furusaki A, Kurosawa E (1979) The absolute configurations of halogenated chamigrene derivatives from the marine algaLaurencia glandulifera Kützing. Tetrahedron 35:823
Suzuki M, Koizumi K, Kikuchi H, Suzuki T, Kurosawa E (1983) Epilaurallene, a new nonterpenoid C15-bromoallene from the red algaLaurencia nipponica Yamada. Bull Chem Soc Jpn 56:715
Suzuki M, Segawa M, Kikuchi H, Suzuki T, Kurosawa E (1985) (5S,7R,10R)-Selin-4(14)-en-5α-ol, a sesquiterpene alcohol from the red algaLaurencia nipponica. Phytochemistry 24:2011
Li XD, Ding W, Miao FP, Ji NY (2012) Halogenated chamigrane sesquiterpenes fromLaurencia okamurai. Magn Reson Chem 50:174
Howard BM, Fenical W (1976) 10-Bromo-α-chamigrene. Tetrahedron Lett 17:2519
König GM, Wright AD (1997)Laurencia rigida: chemical investigations of its antifouling dichloromethane extract. J Nat Prod 60:967
Wolinsky LE, Faulkner DJ (1976) A biomimetic approach to the synthesis ofLaurencia metabolites. Synthesis of 10-bromo-α-chamigrene. J Org Chem 41:597
Guella G, Öztunç A, Mancini I, Pietra F (1997) Stereochemical features of sesquiterpene metabolites as a distinctive trait of red seaweeds in the genusLaurencia. Tetrahedron Lett 38:8261
Li XD, Miao FP, Yin XL, Liu JL, Ji NY (2012) Sesquiterpenes from the marine red algaLaurencia composita. Fitoterapia 83:1191
Ji N-Y, Li X-M, Li K, Wang B-G (2009) Halogenated sesquiterpenes from the marine red algaLaurencia saitoi (Rhodomelaceae). Helv Chim Acta 92:1873
Dias T, Brito I, Moujir L, Paiz N, Darias J, Cueto M (2005) Cytotoxic sesquiterpenes fromAplysia dactylomela. J Nat Prod 68:1677
Rovirosa J, Soto H, Cueto M, Dárias J, Herrera J, San-Martín A (1999) Sesquiterpenes fromLaurencia claviformis. Phytochemistry 50:745
Ji N, Li X, Li K, Gloer JB, Wang B (2008) Halogenated sesquiterpenes and non-halogenated linear C15 acetogenins from the marine red algaLaurencia composita and their chemotaxonomic significance. Biochem Syst Ecol 36:938
Jongaramruong J, Blackman AJ, Skelton BW, White AH (2002) Chemical relationships between the sea hareAplysia parvula and the red seaweedLaurencia filiformis from Tasmania. Aust J Chem 55:275
Elsworth JF, Thomson RH (1989) A new chamigrane fromLaurencia glomerata. J Nat Prod 52:893
Wright AD, König GM, Sticher O (1991) New sesquiterpenes and C15 acetogenins from the marine red algaLaurencia implicata. J Nat Prod 54:1025
Suzuki M, Matsuo Y, Masuda M (1993) Structures of laurenenyne A and B, novel halogenated acetogenins from a species of the red algalLaurencia. Tetrahedron 49:2033
Takahashi Y, Suzuki M, Abe T, Masuda M (1998) Anhydroaplysiadiol fromLaurencia japonensis. Phytochemistry 48:987
Vairappan CS, Zanil II, Kamada T (2014) Structural diversity and geographical distribution of halogenated secondary metabolites in red algae,Laurencia nangii Masuda (Rhodomelaceae, Ceramiales), in the coastal waters of North Borneo Island. J Appl Phycol 26:1189
Kimura J, Kamada N, Tsujimoto Y (1999) Fourteen chamigrane derivatives from a red algaLaurencia nidifica. Bull Chem Soc Jpn 72:289
Suzuki T, Kikuchi H, Kurosawa E (1982) Six new sesquiterpenoids from the red algaLaurencia nipponica Yamada. Bull Chem Soc Jpn 55:1561
Lyakhova EG, Kalinovsky AI, Kolesnikova SA, Vaskovsky VE, Stonik VA (2004) Halogenated diterpenoids from the red algaLaurencia nipponica. Phytochemistry 65:2527
Alarif WM, Al-Lihaibi SS, Ayyad SEN, Abdel-Rhman MH, Badria FA (2012) Laurene-type sesquiterpenes from the Red Sea red algaLaurencia obtusa as potential antitumor-antimicrobial agents. Eur J Med Chem 55:462
Ojika M, Shizuri Y, Yamada K (1982) A halogenated chamigrane epoxide and six related halogen-containing sesquiterpenes from the red algaLaurencia okamurai. Phytochemistry 21:2410
Ji N-Y, Li X-M, Zhang Y, Wang B-G (2007) Two new halogenated chamigrane-type sesquiterpenes and other secondary metabolites from the marine red algaLaurencia okamurai and their chemotaxonomic significance. Biochem Syst Ecol 35:627
Abou-Elnaga ZS, Alarif WM, Al-Iihaibi SS (2011) New larvicidal acetogenin from the red algaLaurencia papillosa. CLEAN 39:787
Kennedy DJ, Selby IA, Thomson RH (1988) Chamigrane metabolites fromLaurencia obtusa andL. scoparia. Phytochemistry 27:1761
König GM, Wright AD (1994) New C15 acetogenins and sesquiterpenes from the red algaLaurencia sp. cf.L. gracilis. J Nat Prod 57:477–485
Howard BM, Fenical W (1975) Structures and chemistry of two new halogen-containing chamigrene derivatives fromLaurencia. Tetrahedron Lett 16:1687
Suzuki M, Kawamoto T, Vairappan CS, Ishii T, Abe T, Masuda M (2005) Halogenated metabolites from JapaneseLaurencia spp. Phytochemistry 66:2787
Suzuki M, Nakano S, Takahashi Y, Abe T, Masuda M, Takahashi H, Kobayashi K (2002) Brominated labdane-type diterpenoids from an OkinawanLaurencia sp. J Nat Prod 65:801
San-Martín A, Darias J, Soto H, Contreras C, Herrera JS, Rovirosa J (1997) A new C15 acetogenin from the marine algaLaurencia claviformis. Nat Prod Lett 10:303
Suzuki M, Kurosawa E, Furusaki A (1988) The structure and absolute stereochemistry of a halogenated chamigrene derivative from the red algaLaurencia species. Bull Chem Soc Jpn 61:3371
Liang Y, Li XM, Cui CM, Li CS, Sun H, Wang BG (2012) Sesquiterpene and acetogenin derivatives from the marine red algaLaurencia okamurai. Mar Drugs 10:2817
Fenical W (1976) Chemical variation in a new bromochamigrene derivative from the red seaweedLaurencia pacifica. Phytochemistry 15:511
Suzuki M, Segawa M, Suzuki T, Kurosawa E (1983) Structure of halogenated chamigrene derivatives, minor constituents from the red algaLaurencia nipponica Yamada. Bull Chem Soc Jpn 56:3824
Suzuki M, Kurosawa E, Irie T (1974) Glanduliferol, a new halogenated sesquiterpenoid fromLaurencia glandulifera Kützing. Tetrahedron Lett 15:1807
Suzuki M, Kurosawa E, Irie T (1974) Three new sesquiterpenoids containing bromine, minor constituents ofLaurencia glandulifera Kützing. Tetrahedron Lett 15:821
Wright AD, Coll JC, Price IR (1990) Tropical marine algae, VII. The chemical composition of marine algae from North Queensland waters. J Nat Prod 53:845
Rovirosa J, Astudillo L, Ramirez ME, San-Martin A (1991) Chemical relationship betweenAplysia dactylomela andLaurencia claviformis Borgesen from Easter Island. Bol Soc Chil Quim 36:153
Suzuki M, Kurosawa E (1978) Two new halogenated sesquiterpenes from the red algaLaurencia majuscula Harvey. Tetrahedron Lett 19:4805
Suzuki M, Furusaki A, Hashiba N, Kurosawa E (1979) The structures and absolute stereochemistry of two halogenated chamigrenes from the red algaLaurencia majuscula Harvey. Tetrahedron Lett 20:879
Palaniveloo K, Vairappan CS (2014) Chemical relationship between red algae genusLaurencia and sea hare (Aplysia dactylomela Rang) in the North Borneo Island. J Appl Phycol 26:1199
Niwa H, Yoshida Y, Hasegawa T, Yamada K (1985) Total synthesis of (±)-(Z)-9-(bromomethylene)-1,5,5-trimethylspiro[5.5]undeca-1,7-dien-3-one, a brominated sesquiterpene of chamigrane type. Chem Lett 14:1687
Niwa H, Yoshida Y, Hasegawa T, Yamada K (1991) Total synthesis of (±)-(Z)-9-(bromomethylene)-1,5,5-trimethylspiro[5.5]undeca-1,7-dien-3-one, a brominated sesquiterpene of the chamigrane type. Tetrahedron 47:2155
Zhu JL, Huang PW, You RY, Lee FY, Tsao SW, Chen IC (2011) Total syntheses of (±)-(Z)- and (±)-(E)-9-(bromomethylene)-1,5,5-trimethylspiro[5.5]undeca-1,7-dien-3-one and (±)-majusculone. Synthesis 43:715
Suzuki M, Kurosawa E, Kurata K (1987) Majusculone, a novel norchamigrane-type metabolite from the red algaLaurencia majuscula Harvey. Bull Chem Soc Jpn 60:3795
Srikrishna A, Vasantha Lakshmi B, Mathews M (2006) Construction ofspiro[5.5]undecanes containing a quaternary carbon atom adjacent to aspirocentre via an Ireland ester Claisen rearrangement and RCM reaction sequence. Total syntheses of (±)-α-chamigrene, (±)-β-chamigrene and (±)-laurencenone C. Tetrahedron Lett 47:2103
Brennan MR, Erickson KL, Minott DA, Pascoe KO (1987) Chamigrane metabolites from a Jamaican variety ofLaurencia obtusa. Phytochemistry 26:1053
Kaiser CR, Pitombo LF, Pinto AC (2000) NMR analysis of a complex spin system from aspiro-chamigrene. Spectrosc Lett 33:457
Machado FLD, Pacienza-Lima W, Rossi-Bergmann B, Gestinari LMD, Fujii MT, de Paula JC, Costa SS, Lopes NP, Kaiser CR, Soares AR (2011) Antileishmanial sesquiterpenes from the Brazilian red algaLaurencia dendroidea. Planta Med 77:733
Capon RJ, Ghisalberti EL, Mori TA, Jefferies PR (1988) Sesquiterpenes fromLaurencia spp. J Nat Prod 51:1302
Díaz-Marrero AR, Brito I, de la Rosa JM, D’Croz L, Fabelo O, Ruiz-Perez C, Darias J, Cueto M (2009) Novel lactone chamigrene-derived metabolites fromLaurencia majuscula. Eur J Org Chem 2009:1407
González AG, Darias J, Díaz A, Fourneron JD, Martín JD, Pérez C (1976) Evidence for the biogenesis of halogenated chamigrenes from the red algaLaurencia obtusa. Tetrahedron Lett 17:3051
González AG, Martín JD, Martín VS, Martínez-Ripoll M, Fayos J (1979) X-Ray study of sesquiterpene constituents of the algaL. obtusa leads to structure revision. Tetrahedron Lett 20:2717
Gerwick WH, Lopez A, Davila R, Albors R (1987) Two new chamigrene sesquiterpenoids from the tropical red algaLaurencia obtusa. J Nat Prod 50:1131
Martín JD, Caballero P, Fernández JJ, Norte M, Pérez R, Rodríguez ML (1989) Metabolites fromLaurencia obtusa. Phytochemistry 28:3365
Dorta E, Díaz-Marrero AR, Cueto M, D’Croz L, Maté JL, Darias J (2004) Chamigrenelactone, a polyoxygenated sesquiterpene with a novel structural type and devoid of halogen fromLaurencia obtusa. Tetrahedron Lett 45:7065
Davyt D, Fernández R, Suescun L, Mombrú AW, Saldaña J, Domínguez L, Coll J, Fujii MT, Manta E (2001) New sesquiterpene derivatives from the red algaLaurencia scoparia. Isolation, structure determination and anthelmintic activity. J Nat Prod 64:1552
Díaz-Marrero AR, de la Rosa JM, Brito I, Darias J, Cueto M (2012) Dactylomelatriol, a biogenetically intriguing omphalane-derived marine sesquiterpene. J Nat Prod 75:115
Perales A, Martínez-Ripoll M, Fayos J (1979) Structure of obtusol acetate, a halogenated chamigrene-type sesquiterpene. Acta Crystallogr B35:2771
Waraszkiewicz SM, Erickson KL (1974) Halogenated sesquiterpenoids from the Hawaiian marine algaLaurencia nidifica: nidificene and nidifidiene. Tetrahedron Lett 15:2003
Kikuchi H, Suzuki T, Kurosawa E, Suzuki M (1991) The structure of notoryne, a halogenated C15 nonterpenoid with a novel carbon skeleton from the red algaLaurencia nipponica Yamada. Bull Chem Soc Jpn 64:1763
Brito I, Cueto M, Díaz-Marrero AR, Darias J, San Martín A (2002) Oxachamigrenes, new halogenated sesquiterpenes fromLaurencia obtusa. J Nat Prod 65:946
McPhail KL, Davies-Coleman MT, Copley RCB, Eggleston DS (1999) New halogenated sesquiterpenes from South African specimens of the circumtropical sea hareAplysia dactylomela. J Nat Prod 62:1618
Ali MS (2004) Algal halo-chamigranes. J Chem Soc Pak 26:310
Juagdan EG, Kalidindi R, Scheuer P (1997) Two new chamigranes from an Hawaiian red algaLaurencia cartilaginea. Tetrahedron 53:521
Francisco MEY, Turnbull MM, Erickson KL (1998) Cartilagineol, the fourth lineage ofLaurencia-derived polyhalogenated chamigrene. Tetrahedron Lett 39:5289
Shubina LK, Fedorov SN, Kalinovskiy AI, Dmitrenok AS, Jin JO, Song MG, Kwak JY, Stonik VA (2007) Four new chamigrane sesquiterpenoids from the opistobranch molluskAplysia dactylomela. Russ Chem Bull 56:2109
Ayyad SEN, Dawidar AAM, Dias HW, Howie RA, Jakupovic J, Thomson RH (1990) Three halogenated metabolites fromLaurencia obtusa. Phytochemistry 29:3193
Da Silva Machado FL, Ventura TLB, de Souza Gestinari LM, Cassano V, Resende JALC, Kaiser CR, Lasunskaia EB, Muzitano MF, Soares AR (2014) Sesquiterpenes from the Brazilian red algaLaurencia dendroidea J. Agarth. Molecules 19:3181
Suescun L, Mombrú AW, Mariezcurrena RA, Davyt D, Fernández R, Manta E (2001) Two natural products from the algaeLaurencia scoparia. Acta Crystallogr C57:286
Francisco MEY, Erickson KL (2001) Ma’iliohydrin, a cytotoxic chamigrene dibromohydrin from a PhilippineLaurencia species. J Nat Prod 64:790
de Nys R, König G, Wright A, Sticher O (1993) Two metabolites from the red algaLaurencia flexilis. Phytochemistry 34:725
Tan KL, Matsunaga S, Vairappan CS (2011) Halogenated chamigranes of red algaLaurencia snackeyi (Weber-van Bosse) Masuda from Sulu-Sulawesi Sea. Biochem Syst Ecol 39:213
Fedorov SN, Reshetnyak MV, Shchedrin AP, Il’in GS, Struchkov YT, Stonik VA, Elyakov GB (1989) New halogenated chamigrane sesquiterpenoid from the molluscAplysia sp. Structure and absolute configuration. Dokl Akad Nauk SSSR 305:877
Li XD, Miao FP, Li K, Ji NY (2012) Sesquiterpenes and acetogenins from the marine red algaLaurencia okamurai. Fitoterapia 83:518
de Nys R, Coll JC, Bowden BF (1992) Tropical marine algae. VIII. The structural determination of novel sesquiterpenoid metabolites from the red algaLaurencia majuscula. Aust J Chem 45:1611
Rashid MA, Gustafson KR, Cardellina JH II, Boyd MR (1995) Brominated chamigrane sesquiterpenes produce a novel profile of differential cytotoxicity in the NCI in vitro screen. Nat Prod Lett 6:255
Vairappan CS, Anangdan SP, Lee KT, Matsunaga S (2010) Role of secondary metabolites as defense chemicals against ice-ice disease bacteria in biofouler at carrageenophyte farms. J Appl Phycol 22:305
Schmitz FJ, Michaud DP, Schmidt PG (1982) Marine natural products: parguerol, deoxyparguerol and isoparguerol. New brominated diterpenes with modified pimarane skeletons from the sea hareAplysia dactylomela. J Am Chem Soc 104:6415
Bansemir A, Just N, Michalik M, Lindequist U, Lalk M (2004) Extracts and sesquiterpene derivatives from the red algaLaurencia chondrioides with antibacterial activity against fish and human pathogenic bacteria. Chem Biodivers 1:463
Coll JC, Wright AD (1989) Tropical marine algae. III. New sesquiterpenes fromLaurencia majuscula (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust J Chem 42:1591
Furusaki A, Matsumoto T, Kurata K, Suzuki T, Suzuki M, Kurosawa E (1983) X-ray structure determination of (–)-obtusane, a new sesquiterpene from the red algaLaurencia nipponica Yamada. Bull Chem Soc Jpn 56:3501
Ji N-Y, Li X-M, Cui C-M, Wang B-G (2007) Terpenes and polybromoindoles from the marine red algaLaurencia decumbens (Rhodomelaceae). Helv Chim Acta 90:1731
González AG, Martín JD, Martín VS, Norte M (1979) Carbon-13 NMR application toLaurencia polyhalogenated sesquiterpenes. Tetrahedron Lett 20:2719
Vairappan CS, Phang S (2005) Morphology and halochamigrene metabolite content ofLaurencia majuscula (Rhodomelaceae, Ceramiales) from the Spratly Islands. Malay J Sci 24:29
Guella G, Mancini I, Pietra F (1992) C15 acetogenins and terpenes of the spongeSpongia zimocca of Il Rogiolo: a case of seaweed-metabolite transfer to, and elaboration within, a sponge? Comp Biochem Physiol B 103:1019
Guella G, Chiasera G, Mancini I, Pietra F (1991) Conformational analysis of marine polyhalogenated β-chamigrenes through temperature-dependent NMR spectra. Helv Chim Acta 74:774
Vairappan CS, Daitoh M, Suzuki M, Abe T, Masuda M (2001) Antibacterial halogenated metabolites from the MalaysianLaurencia species. Phytochemistry 58:291
Vairappan CS, Anangdan SP, Matsunaga S (2009) Diet-derived halogenated metabolite from the sea hareAplysia parvula. Malay J Sci 28:269
Hegazy MEF, Moustfa AY, Mohamed AEHH, Alhammady MA, Elbehairi SEIE, Ohta S, Paré PW (2014) New cytotoxic halogenated sesquiterpenes from the Egyptian sea hareAplysia oculifera. Tetrahedron Lett 55:1711
Martín JD, Pérez C, Ravelo JL (1986) Enantioselective ring construction: synthesis of halogenated marine naturalspiro[5.5]undecane sesquiterpenes. J Am Chem Soc 108:7801
González AG, Martín JD, Martín VS, Norte M, Fayos J, Martínez-Ripoll M (1978) A new polyhalogenated sesquiterpene fromLaurencia obtusa. Tetrahedron Lett 19:2035
König GM, Wright AD (1997) Pulsed field gradient spectroscopy (PFGS): application to the structure elucidation of (+)-(10S)-10-bromo-β-chamigrene. Phytochem Anal 8:167
Martín JD, Palazón JM, Pérez C, Ravelo JL (1986) Syntheses of marine molecules. Pure Appl Chem 58:395
dos Santos AO, Veiga-Santos P, Ueda-Nakamura T, Dias BP, Sudatti DB, Bianco EM, Pereira RC, Nakamura CV (2010) Effect of elatol, isolated from red seaweedLaurencia dendroidea, onLeishmania amazonensis. Mar Drugs 8:2733
Born FS, Bianco EM, da Camara CAG (2012) Acaricidal and repellent activity of terpenoids from seaweeds collected in Pernambuco, Brazil. Nat Prod Commun 7:463
Sims JJ, Lin GHY, Wing RM (1974) Marine natural products X. Elatol, a halogenated sesquiterpene alcohol from the red algaLaurencia elata. Tetrahedron Lett 15:3487
Lhullier C, Donnangelo A, Caro M, Palermo JA, Horta PA, Falkenberg M, Schenkel EP (2009) Isolation of elatol fromLaurencia microcladia and its palatability to the sea urchinEchinometra lucunter. Biochem Syst Ecol 37:254
Ji N, Li X, Ding L, Wang B (2007) Aristolane sesquiterpenes and highly brominated indoles from the marine red algaLaurencia similis (Rhodomelaceae). Helv Chim Acta 90:385
Rose AF, Sims JJ (1977) Marine natural products XIV. 1-S-Bromo-4-R-hydroxyselin-7-ene, a metabolite of the marine algaLaurencia sp. Tetrahedron Lett 18:2935
Jiménez-Romero C, Mayer AMS, Rodríguez AD (2014) Dactyloditerpenol acetate, a new prenylbisabolane-type diterpene fromAplysia dactylomela with significant in vitro anti-neuroinflammatory activity. Bioorg Med Chem Lett 24:344
Suzuki M, Segawa M, Suzuki T, Kurosawa E (1985) Structures of two new halochamigrene derivatives from the red algaLaurencia nipponica Yamada. Bull Chem Soc Jpn 58:2435
Waraszkiewicz SM, Erickson KL (1975) Halogenated sesquiterpenoids from the Hawaiian marine algaLaurencia nidifica. II. Nidifidienol. Tetrahedron Lett 16:281
Masuda M, Itoh T, Matsuo Y, Suzuki M (1997) Sesquiterpenoids ofLaurencia majuscula (Ceramiales, Rhodophyta) from the Ryukyu Islands, Japan. Phycol Res 45:59
Sakai R, Higa T, Jefford CW, Bernardinelli G (1986) The absolute configurations and biogenesis of some new halogenated chamigrenes from the sea hareAplysia dactylomela. Helv Chim Acta 69:91
McMillan JA, Paul IC, White RH, Hager LP (1974) Molecular structure of acetoxyintricatol: a new bromo compound fromLaurencia intricata. Tetrahedron Lett 15:2039
Cox PJ, Howie RA (1989) Structure of 2,10-dibromo-3-chloro-7R,8S-epoxychamigrene. Z Krist 188:1
Bano S, Ali MS, Ahmad VU (1987) Marine natural products. VI. A halogenated chamigrene epoxide from the red algaLaurencia pinnatifida. Planta Med 53:508
Furusaki A, Katayama C, Matsumoto T, Suzuki M, Suzuki T, Kikuchi H, Kurosawa E (1982) The crystal and molecular structure of 7,8-epoxyhalochamigrene. Bull Chem Soc Jpn 55:3398
Vairappan CS, Ishii T, Lee TK, Suzuki M, Zhaoqi Z (2010) Antibacterial activities of a new brominated diterpene from BorneonLaurencia spp. Mar Drugs 8:1743
Bittner ML, Silva M, Paul VJ, Fenical W (1985) A rearranged chamigrene derivative and its potential biogenetic precursor from a new species of the marine red algal genusLaurencia (Rhodomelaceae). Phytochemistry 24:987
Kaiser CR, Pitombo LF, Pinto AC (1998) C-13 and H-1 NMR assignments of the chamigrenes prepacifenol and dehydroxyprepacifenol epoxides. Spectrosc Lett 31:573
Faulkner DJ, Stallard MO, Ireland C (1974) Prepacifenol epoxide, a halogenated sesquiterpene diepoxide. Tetrahedron Lett 15:3571
Ireland C, Stallard MO, Faulkner DJ, Finer J, Clardy J (1976) Some chemical constituents of the digestive gland of the sea hareAplysia californica. J Org Chem 41:2461
Suzuki M, Kurosawa E (1985) A C-15 non-terpenoid from the red algaLaurencia okamurai. Phytochemistry 24:1999
Vairappan CS, Suzuki M, Ishii T, Okino T, Abe T, Masuda M (2008) Antibacterial activity of halogenated sesquiterpenes from MalaysianLaurencia spp. Phytochemistry 69:2490
Pitombo LF, Kaiser CR, Pinto AC (1996) Occurrence of chamigrenes inAplysia dactylomela from Brazilian waters. Bol Soc Chil Quim 41:433
Masuda M, Kawaguchi S, Takahashi Y, Matsuo Y, Suzuki M (1997) A taxonomic study of the genusLaurencia (Ceramiales, Rhodophyta) from Vietnam. I.Laurencia caduciramulosa Masuda et Kawaguchi, sp. nov. Crypt Algol 18:71
Hall JG, Reiss JA (1986) Elatenyne - a pyrano[3,2-b]pyranyl vinyl acetylene from the red algaLaurencia elata. Aust J Chem 39:1401
Fronczek FR, Caccamese S (1989) Redetermination of the absolute configuration of deoxyprepacifenol from the Mediterranean red algaLaurencia majuscula. Acta Crystallogr C45:1102
de Nys R, Coll JC, Bowden BF (1993) Tropical marine algae. IX. A new sesquiterpenoid metabolite from the red algaLaurencia marianensis. Aust J Chem 46:933
Kikuchi H, Suzuki T, Suzuki M, Kurosawa E (1985) A new chamigrane-type bromo diether from the red algaLaurencia nipponica Yamada. Bull Chem Soc Jpn 58:2437
Watanabe K, Umeda K, Miyakado M (1989) Isolation and identification of three insecticidal principles from the red algaLaurencia nipponica Yamada. Agric Biol Chem 53:2513
Mao SC, Guo YW (2010) Sesquiterpenes from Chinese red algaLaurencia okamurai. Chin J Nat Med 8:321
Sims JJ, Fenical W, Wing RM, Radlick P (1973) Marine natural products. IV. Prepacifenol, a halogenated epoxy sesquiterpene and precursor to pacifenol from the red algaLaurencia filiformis. J Am Chem Soc 95:972
Kurata K, Furusaki A, Katayama C, Kikuchi H, Suzuki T (1981) A new labile sesquiterpene diol having bromine from the marine red algaLaurencia nipponica Yamada. Chem Lett 10:773
Kigoshi H, Shizuri Y, Niwa H, Yamada K (1981) Laurencenyne, a plausible precursor of various nonterpenoid C15-compounds and neolaurencenyne from the red algaLaurencia okamurai. Tetrahedron Lett 22:4729
Kurata K, Suzuki T, Suzuki M, Kurosawa E, Furusaki A, Suehiro K, Matsumoto T, Katayama C (1983) Structures of two new halogenated chamigrane-type sesquiterpenoids from the red algaLaurencia nipponica Yamada. Chem Lett 12:561
Caccamese S, Compagnini A, Toscano RM, Nicolo F, Chapuis G (1987) A new labile bromoterpenoid from the red algaLaurencia majuscula: dehydrochloroprepacifenol. Tetrahedron 43:5393
González AG, Martín JD, Norte M, Pérez R, Weyler V, Perales A, Fayos J (1983) New halogenated constituents of the digestive gland of the sea hareAplysia dactylomela. Tetrahedron Lett 24:847
Ahmad VU, Ali MS (1991) Pinnatifinone, a new halogenated chamigrene from the red algaLaurencia pinnatifida. Sci Pharm 59:243
White RH, Hager LP (1975) A biogenetic sequence of halogenated sesquiterpenes fromLaurencia intricata. Phys Chem Sci Res Rep 1:633
Stallard MO, Faulkner DJ (1974) Chemical constituents of the digestive gland of the sea hareAplysia californica - II. Chemical transformations. Comp Biochem Physiol 49Β:37
Selover SJ, Crews P (1980) Kylinone, a new sesquiterpene skeleton from the marine algaLaurencia pacifica. J Org Chem 45:69
Stallard MO, Faulkner DJ (1974) Chemical constituents of the digestive gland of the sea hareAplysia californica - I. Importance of diet. Comp Biochem Physiol 49B:25
Kaiser CR, Pitombo LF, Pinto AC (2001) Complete1H and13C NMR assignments of chamigrenes fromAplysia dactylomela. Magn Reson Chem 39:147
Ji NY, Li XM, Wang BG (2010) Sesquiterpenes and other metabolites from the marine red algaLaurencia composita (Rhodomelaceae). Helv Chim Acta 93:2281
Waraszkiewicz SM, Erickson KL (1976) Halogenated sesquiterpenoids from the Hawaiian marine algaLaurencia nidifica. IV. Nidifocene. Tetrahedron Lett 17:1443
Waraszkiewicz SM, Erickson KL, Finer J, Clardy J (1977) Nidifocene: a reassignment of structure. Tetrahedron Lett 18:2311
Iwata C, Akiyama T, Miyashita K (1988) An approach to the stereoselective synthesis of nidifocene: regio- and stereoselective synthesis ofvic-trans-bromochlorocyclohexane ring system. Chem Pharm Bull 36:2878
Miyashita K, Yoneda K, Akiyama T, Koga Y, Tanaka M, Yoneyama T, Iwata C (1993) An approach to the stereoselective synthesis of nidifocene. III. Total syntheses of stereoisomers of (±)-nidifocene from (±)-dehalogenonidifocene. Chem. Pharm Bull 41:465
Ahmad VU, Ali MS (1991) Terpenoids from marine red algaLaurencia pinnatifida. Phytochemistry 30:4172
Cassano V, De-Paula JC, Fujii MT, Da Gama BAP, Teixeira VL (2008) Sesquiterpenes from the introduced red seaweedLaurencia caduciramulosa (Rhodomelaceae, Ceramiales). Biochem Syst Ecol 36:223
Dias DA, Urban S (2011) Phytochemical studies of the southern Australian marine algaLaurencia elata. Phytochemistry 72:2081
Caccamese S, Compagnini A, Toscano RM (1986) Pacifenol from the Mediterranean red algaLaurencia majuscula. J Nat Prod 49:173
Fronczek FR, Caccamese S (1986) Redetermination of pacifenol, a halogenated sesquiterpene from the Mediterranean red algaLaurencia majuscula. Acta Crystallogr C42:1649
Suzuki T (1980) Two new sesquiterpene alcohols containing bromine from the marine algaLaurencia nipponica Yamada. Chem Lett 9:541
Sims JJ, Fenical W, Wing RM, Radlick P (1971) Marine natural products. I. Pacifenol, a rare sesquiterpene containing bromine and chlorine from the red algaLaurencia pacifica. J Am Chem Soc 93:3774
Argandona VH, San-Martín A, Rovirosa J (1993) Halogenated sesquiterpenes pacifenol and pacifenol derivatives on the aphidSchizaphis graminum. Phytochemistry 32:1159
Rovirosa J, Darias J, Manriquez V, Brito I, Lara N, Argandona V, San Martin A (1994) Structure and insecticidal activities of chamigrene derivatives. Bol Soc Chil Quim 39:193
Rao CB, Satyanarayana C, Rao DV (1994) A new chamigrane derivative fromAplysia dactylomela of the Indian Ocean. In: Thompson MF, Nagabhushanam R, Sarojini R, Fingerman M (eds) Recent developments in biofouling control. Indo-United States conference, Bangalore, July 1992. AA Balkema, Rotterdam
Li XD, Miao FP, Liang XR, Wang BG, Ji NY (2013) Two halosesquiterpenes fromLaurencia composita. RSC Adv 3:1953
Sims JJ, Fenical W, Wing RM, Radlick P (1972) Marine natural products III. Johnstonol, an unusual halogenated epoxide from the red algaLaurencia johnstonii. Tetrahedron Lett 13:195
Irie T, Suzuki M, Hayakawa Y (1969) Isolation of aplysin, debromoaplysin and aplysinol fromLaurencia okamurai Yamada. Bull Chem Soc Jpn 42:843
Sun J, Shi DY, Ma M, Li SA, Wang SJ, Han LJ, Yang YC, Fan X, Shi JG, He L (2005) Sesquiterpenes from the red algaLaurencia tristicha. J Nat Prod 68:915
Atta-ur-Rahman, Ahmad VU, Bano S, Abbas SA, Alvi KA, Ali MS, Lu HSM, Clardy J (1988) Pinnatazane, a bridged cyclic ether sesquiterpene fromLaurencia pinnatifida. Phytochemistry 27:3879
Aknin M, Ahond A, Chiaroni A, Poupat C, Riche C, Kornprobst JM (1989) Isolation, détermination structurale et configuration absolue de l’almadioxyde. Tetrahedron Lett 30:559
Bano S, Ali MS, Ahmad VU (1988) Marine natural products, IX. A new halogenated sesquiterpene pinnatifidone from the red algaLaurencia pinnatifida. Z Naturforsch 43B:1347
Taber DF, Sikkander IMI, Storck PH (2007) Enantioselective synthesis of (+)-majusculone. J Org Chem 72:4098
Iwata C, Akiyama T, Miyashita K (1988) Synthesis of four possible isomers of 9-(bromomethylene)-1,2,5-trimethyspiro[5.5]undeca-1,7-dien-3-one: structure elucidation of a brominated rearranged chamigrane-type sesquiterpene. Chem Pharm Bull 36:2872
Suzuki M, Daitoh M, Vairappan CS, Abe T, Masuda M (2001) Novel halogenated metabolites from the MalaysianLaurencia pannosa. J Nat Prod 64:597
Liang Y, Li XM, Cui CM, Li CS, Wang BG (2009) A new rearranged chamigrane sesquiterpene fromLaurencia okamurai. Chin Chem Lett 20:190
Fedorov SN, Shubina LK, Kalinovsky AI, Lyakhova EG, Stonik VA (2000) Structure and absolute configuration of a new rearranged chamigrane-type sesquiterpenoid from the sea hareAplysia sp. Tetrahedron Lett 41:1979
Atta-ur-Rahman (1989) Isolation and structural studies on new natural products of potential biological importance. Pure Appl Chem 61:453
Fukuzawa A, Shea CM, Masamune T, Furusaki A, Katayama C, Matsumoto T (1981) Spironippol, new sesquiterpene from the marine algaLaurencia nipponica Yamada. Tetrahedron Lett 22:4087
Kazlauskas R, Murphy PT, Quinn RJ, Wells RT (1976) New laurene derivatives fromLaurencia filiformis. Aust J Chem 29:2533
Irie T, Yasunari Y, Suzuki T, Imai N, Kurosawa E, Masamune T (1965) A new sesquiterpene hydrocarbon fromLaurencia glandulifera. Tetrahedron Lett 6:3619
Irie T, Suzuki T, Ito S, Kurosawa E (1967) The absolute configuration of laurene and α-cuparenone. Tetrahedron Lett 8:3187
Irie T, Suzuki T, Yasunari Y, Kurosawa E, Masamune T (1969) Laurene, a sesquiterpene hydrocarbon fromLaurencia species. Tetrahedron 25:459
Suzuki M, Kurosawa E (1978) New aromatic sesquiterpenoids from the red algaLaurencia okamurai Yamada. Tetrahedron Lett 19:2503
Wratten SJ, Faulkner DJ (1977) Metabolites of the red algaLaurencia subopposita. J Org Chem 42:3343
Findlay JA, Li GQ (2002) Novel terpenoids from the sea hareAplysia punctata. Can J Chem 80:1697
Srikrishna A, Sundarababu G (1990) A radical cyclisation based strategy to cuparenoids: synthesis of (±)-α-cuparenone, (±)-epilaurene and laurenes. Tetrahedron 46:3601
Bailey WF, Jiang XL, McLeod CE (1995) Conformational control in the cyclization of an unsaturated vinyllithium: synthesis of (±)-laurene. J Org Chem 60:7791
Kulkarni MG, Pendharkar DS (1997) An efficient total synthesis of (±)-laurene. J Chem Soc Perkin Trans 1:3127
Oh CH, Han JW, Kim JS, Um SY, Jung HH, Jang WH, Won HS (2000) A short synthesis of (±)-laurene: mechanistic reinvestigation in palladium-catalyzed cycloreductions of 1,6-enynes. Tetrahedron Lett 41:8365
Nemoto H, Nagamochi M, Fukumoto K (1993) Chiral cyclobutanones as versatile synthons: the first enantioselective total synthesis of (+)-laurene. J Chem Soc Perkin Trans 1:2329
Kladi M, Xenaki H, Vagias C, Papazafiri P, Roussis V (2006) New cytotoxic sesquiterpenes from the red algaeLaurencia obtusa andLaurencia microcladia. Tetrahedron 62:182
Izac RR, Sims JJ (1979) Marine natural products. 18. Iodinated sesquiterpenes from the red algal genusLaurencia. J Am Chem Soc 101:6136
Dias DA, White JM, Urban S (2009)Laurencia filiformis: phytochemical profiling by conventional and HPLC-NMR approaches. Nat Prod Commun 4:157
Suzuki M, Kurosawa E (1979) Halogenated sesquiterpene phenols and ethers from the red algaLaurencia glandulifera Kützing. Bull Chem Soc Jpn 52:3349
König GM, Wright AD (1997) Sesquiterpene content of the antibacterial dichloromethane extract of the marine red algaLaurencia obtusa. Planta Med 63:186
Appleton DR, Babcock RC, Copp BR (2001) Novel tryptophan-derived dipeptides and bioactive metabolites from the sea hareAplysia dactylomela. Tetrahedron 57:10181
Gewali MB, Ronald RC (1982) Synthesis of allolaurinterol. J Org Chem 47:2792
Kladi M, Vagias C, Papazafiri P, Furnari G, Serio D, Roussis V (2007) New sesquiterpenes from the red algaLaurencia microcladia. Tetrahedron 63:7606
Caccamese S, Hager LP, Rinehart KL, Setzer RB (1979) Characterization ofLaurencia species by GC-MS. Bot Mar 22:41
Blunt JW, Lake RJ, Munro MHG (1984) Sesquiterpenes from the marine red algaLaurencia distichophylla. Phytochemistry 23:1951
Irie T, Suzuki M, Kurosawa E, Masamune T (1970) Laurinterol, debromolaurinterol and isolaurinterol, constituents ofLaurencia intermedia Yamada. Tetrahedron 26:3271
Harrowven DC, Lucas MC, Howes PD (2001) The synthesis of a natural product family: from debromoisolaurinterol to the aplysins. Tetrahedron 57:791
Mao S, Guo Y (2005) Cuparene-derived sesquiterpenes from the Chinese red algaLaurencia okamurai Yamada. Helv Chim Acta 88:1034
Ryu G, Park SH, Choi BW, Lee NH, Hwang HJ, Ryu SY, Lee BH (2002) Cytotoxic activities of brominated sesquiterpenes from the red algaLaurencia okamurai. Nat Prod Sci 8:103
Ji N-Y, Li X-M, Li K, Ding L-P, Wang B-G (2008) Laurane-derived sesquiterpenes from the marine red algaLaurencia tristicha (Rhodomelaceae). Nat Prod Res 22:715
Schmitz FJ, Gopichand Y, Michaud D, Prasad RS, Remaley S, Hossain MB, Rahman A, Sengupta PK, van der Helm D (1981) Recent developments in research on metabolites from Caribbean marine invertebrates. Pure Appl Chem 51:853
Angawi RF, Alarif WM, Hamza RI, Badria FA, Ayyad SEN (2014) New cytotoxic laurene-, cuparene- and laurokamurene-type sesquiterpenes from the red algaLaurencia obtusa. Helv Chim Acta 97:1388
González AG, Arteaga JM, Fernández JJ, Martín JD, Norte M, Ruano JZ (1984) Terpenoids of the red algaLaurencia pinnatifida. Tetrahedron 40:2751
Irie T, Fukuzawa A, Izawa M, Kurosawa E (1969) Laurenisol, a new sesquiterpenoid containing bromine fromLaurencia nipponica Yamada. Tetrahedron Lett 10:1343
Kladi M, Vagias C, Furnari G, Moreau D, Roussakis C, Roussis V (2005) Cytotoxic cuparene sesquiterpenes fromLaurencia microcladia. Tetrahedron Lett 46:5723
Yu XQ, He WF, Liu DQ, Feng MT, Fang Y, Wang B, Feng LH, Guo YW, Mao SC (2014) Aseco-laurane sesquiterpene and related laurane derivatives from the red algaLaurencia okamurai Yamada. Phytochemistry 103:162
Ahmad VU, Ali MS, Bano S (1990) Marine natural products. Part 12. Laurol, a new metabolite from the red algaLaurencia pinnatifida. Sci Pharm 58:299
Rao CB, Satyanarayana C, Rao DV, Fahy E, Faulkner DJ (1989) Metabolites ofAplysia dactylomela from the Indian Ocean. Indian J Chem B28:322
Shizuri Y, Yamada A, Yamada K (1984) Laurequinone, a cyclolaurane sesquiterpene from the red algaLaurencia nidifica. Phytochemistry 23:2672
Mao S, Guo Y (2006) A laurane sesquiterpene and rearranged derivatives from the Chinese red algaLaurencia okamurai Yamada. J Nat Prod 69:1209
Yamada K, Yazawa H, Uemura D, Toda M, Hirata Y (1969) Total synthesis of (±)-aplysin and (±)-debromoaplysin. Tetrahedron 25:3509
Feutrill GI, Mirrington RN, Nichols RJ (1973) The total synthesis of (±)-laurinterol and related compounds. Aust J Chem 26:345
Ronald RC (1976) A new stereoselective synthesis of (±)-debromoaplysin and (±)-aplysin. Tetrahedron Lett 17:4413
Biswas S, Ghosh A, Venkateswaran RV (1990) Stereocontrolled synthesis of (±)-debromoaplysin, (±)-aplysin, (±)-debromoaplysinol, (±)-aplysinol and (±)-isoaplysin. J Org Chem 55:3498
Laronze JY, Boukili RE, Patigny D, Dridi S, Cartier D, Levy J (1991) The rearrangement of some cyclopentanone-aryloximes: synthesis of (±)-aplysin, (±)-filiformin and of their debromo analogues. Tetrahedron 47:10003
Ronald RC, Gewali MB, Ronald BP (1980) Total synthesis of (–)-aplysin and (–)-debromoaplysin. J Org Chem 45:2224
Takano S, Moriya M, Ogasawara K (1992) Enantiocontrolled syntheses of the cuparene sesquiterpenes, (–)-herbertene, (+)-β-cuparenone, (–)-debromoaplysin and (–)-aplysin. Tetrahedron Lett 33:329
Nemoto H, Nagamochi M, Ishibashi H, Fukumoto K (1994) A remarkable substituent effect on the enantioselectivity of tandem asymmetric epoxidation and enantiospecific ring expansion of cyclopropylidene alcohols: a new enantiocontrolled synthesis of (–)-debromoaplysin and (–)-aplysin. J Org Chem 59:74
Srikrishna A, Chandrasekhar Babu N (2001) An enantiospecific formal total sunthesis of (–)-aplysin and (–)-debromoaplysin. Tetrahedron Lett 42:4913
Fletcher CJ, Blair DJ, Wheelhouse KMP, Aggarwal VK (2012) The total synthesis of (–)-aplysin via a lithiation-borylation-propenylation sequence. Tetrahedron 68:7598
Sun J, Shi D-Y, Li S, Wang S-J, Han L-J, Fan Z, Yang Y-C, Shi J-G (2007) Chemical constituents of the red algaLaurencia tristicha. J Asian Nat Prod Res 9:725
Miyamoto T, Ebisawa Y, Higuchi R (1995) Aplyparvunin, a bioactive acetogenin from the sea hareAplysia parvula. Tetrahedron Lett 36:6073
Cameron AF, Ferguson G, Robertson JM (1967) The crystal structure and absolute stereochemistry of laurinterol. The absolute stereochemistry of aplysin. J Chem Soc Chem Commun 271
Cameron AF, Ferguson G, Robertson JM (1969)Laurencia natural products II. Crystal structure and absolute stereochemistry of laurinterol acetate, a bicyclo[3.1.0]hexane derivative. J Chem Soc B:692
Sun J, Han LJ, Shi DY, Fan X, Wang SJ, Li S, Yang YC, Shi JG (2005) Sesquiterpenes from red algaLaurencia tristicha. Chin Chem Lett 16:1611
Sun J, Han LJ, Shi DY, Fan X, Wang SJ, Li S, Yang YC, Shi JG (2006) Sesquiterpene components ofLaurencia tristicha. Chin Trad Herb Drugs 37:329
Suzuki M, Kurata K, Kurosawa E (1986) The structure of isoaplysin, a brominated rearranged cuparane-type sesquiterpenoid from the red algaLaurencia okamurai Yamada. Bull Chem Soc Jpn 59:3981
McMillan JA, Paul IC, Caccamese S, Rinehart KL (1976) Aplysinol fromLaurencia decidua: crystal structure and absolute stereochemistry. Tetrahedron Lett 17:4219
Wu Z (1989) Chemical constituents of marine algaeLaurencia okamurai. Chin J Mar Drugs 8:1
Copley RCB, Davies-Coleman MT, Edmonds DR, Faulkner DJ, McPhail KL (2002) Absolute stereochemistry of ibhayinol from a South African sea hare. J Nat Prod 65:580
Nemoto H, Hakamata H, Nagamochi M, Fukumoto K (1994) An efficient route to chiral benzooxabicyclo[3.2.1]octane ring system-the first enantiocontrolled total synthesis of (–)-filiformin. Heterocycles 39:467
Suzuki M, Kurosawa E (1976) New bromo-compounds fromLaurencia glandulifera Kützing. Tetrahedron Lett 17:4817
Yoo S, Suh JH, Yi KY (1998) Total synthesis of (±)-filiforminol and (±)-bromoether A. Synthesis 30:771
Su S, Sun WS, Wang B, Cheng W, Liang H, Zhao YY, Zhang QY, Wu J (2010) A novel brominated cuparene-derived sesquiterpene ether from the red algaLaurencia sp. J Asian Nat Prod Res 12:916
Izac RR, Drage JS, Sims JJ (1981) Caraibical, a new aromatic sesquiterpene from the marine algaLaurencia caraibica. Tetrahedron Lett 22:1799
Ichiba T, Higa T (1986) New cuparene-derived sesquiterpenes with unprecedented oxygenation patterns from the sea hareAplysia dactylomela. J Org Chem 51:3364
Srikrishna A, Krishnan K (1992) Total syntheses of (±)-cyclolaurene, (±)-epicyclolaurene and (±)-β-cuparenones. Tetrahedron 48:3429
Irie T, Suzuki M, Kurosawa E, Masamune T (1966) Laurinterol and debromolaurinterol, constituents fromLaurencia intermedia. Tetrahedron Lett 7:1837
Okamoto Y, Nitanda N, Ojika M, Sakagami Y (2001) Aplysiallene, a new bromoallene as an Na+, K+-ATPase inhibitor from the sea hareAplysia kurodai. Biosci Biotechnol Biochem 65:474
Tsukamoto S, Yamashita Y, Ohta T (2005) New cytotoxic and antibacterial compounds isolated from the sea hareAplysia kurodai. Mar Drugs 3:22
Masuda M, Abe T, Kogame K, Kawaguchi S, Phang SM, Daitoh M, Sakai T, Takahashi Y, Suzuki M (2002) Taxonomic notes on marine algae from Malaysia. VIII. Three species ofLaurencia (Rhodophyceae). Bot Mar 45:571
Takahashi H, Tonoi Y, Matsumoto K, Minami H, Fukuyama Y (1998) Total synthesis of (–)-laurequinone. Chem Lett 27:485
Shizuri Y, Yamada K (1985) Laurebiphenyl, a dimeric sesquiterpene of the cyclolaurane-type from the red algaLaurencia nidifica. Phytochemistry 24:1385
Srikrishna A, Khan IA, Babu RR, Sajjanshetty A (2007) The first total synthesis of (±)-laurokamurene B. Tetrahedron 63:12616
Srikrishna A, Beeralah B, Babu RR (2008) Enantioselective total synthesis and assignment of the absolute configuration of (+)-laurokamurene B. Tetrahedron Asymm 19:624
Sun J, Shi D, Ma M, Li S, Wang S, Han L, Yang Y, Fan X, Shi J, He L (2008) Addition and correction to “Sesquiterpenes from the red algaLaurencia tristicha”. J Nat Prod 71:296
Chen P, Wang J, Liu K, Li C (2008) Synthesis and structural revision of (±)-laurentristich-4-ol. J Org Chem 73:339
Howard BM, Fenical W (1976) α- and β-Snyderol: new bromo-monocyclic sesquiterpenes from the seaweedLaurencia. Tetrahedron Lett 16:41
González AG, Martín JD, Norte M, Rivera P, Ruano JZ (1984) Two new C15 acetylenes from the marine red algaLaurencia obtusa. Tetrahedron 40:3443
Topcu G, Aydoğmuş Z, Imre S, Gšren AC, Pezzuto JM, Clement JA, Kingston DGI (2003) Brominated sesquiterpenes from the red algaLaurencia obtusa. J Nat Prod 66:1505
Howard BM, Fenical W (1978) Obtusadiol, a unique bromoditerpenoid from the marine red algaLaurencia obtusa. Tetrahedron Lett 18:2453
Imre S, Aydoğmuş Z (1997) Secondary metabolites from the red algaLaurencia obtusa. Pharmazie 52:883
González AG, Martín JD, Pérez C, Ramírez MA (1976) Bromonium ion-induced cyclization of methyl farnesate: application to the synthesis of snyderol. Tetrahedron Lett 17:137
Kuniyoshi M, Marma MS, Higa T, Bernardinelli G, Jefford CW (2001) New bromoterpenes from the red algaLaurencia luzonensis. J Nat Prod 64:696
Kuniyoshi M, Wahome PG, Miono T, Hashimoto T, Yokoyama M, Shrestha KL, Higa T (2005) Terpenoids fromLaurencia luzonensis. J Nat Prod 68:1314
Su H, Shi D-Y, Li J, Guo S-J, Li L-L, Yuan Z-H, Zhu X-B (2009) Sesquiterpenes fromLaurencia similis. Molecules 14:1889
Ioannou E, Nappo M, Avila C, Vagias C, Roussis V (2009) Metabolites from the sea hareAplysia fasciata. J Nat Prod 72:1716
Norte M, González R, Padilla A, Fernández JJ, Vázquez JT (1991) New halogenated sesquiterpenes from the red algaLaurencia caespitosa. Can J Chem 69:518
Paul VJ, Fenical W (1980) Palisadins A, B and related monocyclofarnesol-derived sesquiterpenoids fromLaurencia cf.palisada. Tetrahedron Lett 21:2787
Masuda M, Takahashi Y, Okamoto K, Matsuo Y, Suzuki M (1997) Morphology and halogenated secondary metabolites ofLaurencia snackeyi (Weber-van Bosse) stat. nov. (Ceramiales, Rhodophyra). Eur J Phycol 32:293
Vairappan CS, Kamada T, Lee WW, Jeon YJ (2013) Anti-inflammatory activity of halogenated secondary metabolites ofLaurencia snackeyi (Weber-van Bosse) Masuda in LPS-stimulated RAW 264.7 macrophages. J Appl Phycol 25:1805
de Nys R, Wright AD, König GM, Sticher O, Alino PM (1993) Five new sesquiterpenes from the red algaLaurencia flexilis. J Nat Prod 56:877
König GM, Wright AD (1994) X-ray crystal structure of 3,4-epoxypalisadin A. J Nat Prod 57:151
Su J, Zhong Y, Zeng L, Wu H, Ma K (1995) Terpenoids fromLaurencia karlae. Phytochemistry 40:195
Makhanu DS, Yokoyama M, Miono T, Maesato T, Maedomari M, Wisespongpand P, Kuniyoshi M (2006) New sesquiterpenes from the Okinawan red algaLaurencia luzonensis. Bull Fac Sci Univ Ryukuyus 81:115
Su H, Yuan Z-H, Li J, Guo S-J, Deng L-P, Han L-J, Zhu X-B, Shi D-Y (2009) Sesquiterpenes from the marine red algaLaurencia saitoi. Helv Chim Acta 92:1291
Huang Y, Hu S, Zhong Y, Su J (1994) Structure of palisadin B, C15H24Br2O. Chin J Struct Chem 13:48
Vairappan CS, Anangdan SP, Lee TK (2007) Additional halogenated secondary metabolites from the sea hareAplysia dactylomela. Malay J Sci 26:57
Couladouros EA, Vidali VP (2004) Novel stereocontrolled approach tosyn- andanti-oxepene-cyclogeranyltrans-fused polycyclic systems: asymmetric total synthesis of (–)-aplysistatin, (+)-palisadin A, (+)-palisadin B, (+)-12-hydroxypalisadin B and the AB ring system of adociasulfate-2 and toxicol A. Chem Eur J 10:3822
Vairappan CS, Lee TK (2005) Halogenated secondary metabolites from sea hareAplysia dactylomela. Malay J Sci 24:17
Tanaka J, Kuniyoshi M, Tanaka C, Issa HH, Balansa W, Otsuka M, Githige WR, Higa T (2005) Diverse metabolites of coral reef organisms. Pure Appl Chem 77:83
Capon R, Ghisalberti EL, Jefferies PR, Skelton BW, White AH (1981) Sesquiterpene metabolites fromLaurencia filiformis. Tetrahedron 37:1613
Sun LL, Wang CY, Dai HF, Shao CL, Mei WL, Tao-Liu MZD (2011) Chemical constituents ofChondrophycus papillosus and their cytotoxicity in vitro. Chem Nat Comp 47:650
Pettit GR, Herald CL, Allen MS, Von Dreele RB, Vanell LD, Kao JPY, Blake W (1977) The isolation and structure of aplysistatin. J Am Chem Soc 99:262
White JD, Nishiguchi T, Skeean RW (1982) Stereoselective, biogenetically patterned synthesis of (±)-aplysistatin. J Am Chem Soc 104:3923
Hoye TR, Caruso AJ, Dellaria JF, Kurth MJ (1982) Two syntheses ofdl-aplysistatin. J Am Chem Soc 104:6704
Gosselin P, Rouessac F (1983) Polycyclisations cationiques de polyenes via leurs bromohydrines — II. Synthese de la (±) aplysistatine. Tetrahedron Lett 24:5515
Shieh H-M, Prestwich GD (1982) Chiral, biomimetic total synthesis of (–)-aplysistatin. Tetrahedron Lett 23:4643
Faulkner DJ (1976) 3β-Bromo-8-epicaparrapi oxide, the major metabolite ofLaurencia obtusa. Phytochemistry 15:1993
Suzuki M, Takahashi Y, Matsuo Y, Guiry MD, Masuda M (1997) Scanlonenyne, a novel halogenated C15 acetogenin from the red algaLaurencia obtusa in Irish waters. Tetrahedron 53:4271
Recsei C, Chan B, McErlean CSP (2014) Synthesis of (+)-luzofuran and (−)-ancistrofuran. J Org Chem 79:880
Horsley SB, Cardellina JH, Meinwald J (1981) Secondary metabolites from a red alga (Laurencia intricata): sesquiterpene alcohols. J Org Chem 46:5033
Schmitz FJ, McDonald FJ, Vanderah DJ (1978) Marine natural products: sesquiterpene alcohols and ethers from the sea hareAplysia dactylomela. J Org Chem 43:4220
Sun HH, Waraszkiewicz SM, Erickson KL (1976) Sesquiterpenoid alcohols from the Hawaiian marine algaLaurencia nidifica. III. Tetrahedron Lett 17:585
Howard BM, Fenical W, Finer J, Hirotsu K, Clardy J (1977) Neoconcinndiol hydroperoxide, a novel marine diterpenoid from the red algaLaurencia. J Am Chem Soc 99:6440
Oppolzer W, Briner PH, Snowden RL (1980) A short synthesis of 3-methyl-5-(2,3,6-trimethylphenyl)-1-penten-3-ol, a sesquiterpene isolated fromLaurencia nidifica. Helv Chim Acta 63:967
Schmitz FJ, McDonald FJ (1974) Marine natural products: dactyloxene-B, a sesquiterpene ether from the sea hareAplysia dactylomela. Tetrahedron Lett 15:2541
Maurer B, Hauser A, Thommen W, Schulte-Elte KH, Ohloff G (1980) Synthesis and configuration of the eight diastereoisomeric racemates of dactyloxene-B. The relative configuration of dactyloxene-B and -C. Helv Chim Acta 63:293
Maurer B, Hauser A, Ohloff G (1980) Synthesis and absolute configuration of naturally occurring dactyloxene-B and -C. Helv Chim Acta 63:2503
Paquette LA, Lord MD, Negri JT (1993) Enantioselective synthesis of natural (+)-dactyloxene B and C by actuation of oxonium ion-initiated pinacol rearrangement. Tetrahedron Lett 34:5693
Lord MD, Negri JT, Paquette LA (1995) Oxonium ion-initiated pinacolic ring expansion reactions. Application to the enantioselective synthesis of thespirocyclic sesquiterpene ethers dactyloxene-B and C. J Org Chem 60:191
Chattopadhyay SK, Karmakar S, Sarkar K (2005) Short new route to the chiralspiro-tetrahydrofuran subunit common to some terpenoids. Synth Commun 35:2125
Ayyad SN, Jakupovic J, Abdel-Mogib M (1994) A sesquiterpene ether fromLaurencia obtusa. Phytochemistry 36:1077
Suzuki T, Kikuchi H, Kurosawa E (1980) (E)-γ-Bisabolen-8,9-epoxide and isocycloeudesmol, two new sesquiterpenoids fromLaurencia nipponica Yamada. Chem Lett 9:1267
Martín JD, Pérez C, Ravelo JL (1985) Stereocontrolled syntheses of (E)- and (Z)-γ-bisabolene 8,9-epoxide. J Am Chem Soc 107:516
Vazquez JT, Chang M, Nakanishi K, Martin JD, Martin VS, Perez R (1988) Puertitols: novel sesquiterpenes fromLaurencia obtusa. Structure elucidation and absolute configuration and conformation based on circular dichroism. J Nat Prod 51:1257
Davyt D, Fernandez R, Suescun L, Mombrú AW, Saldaña J, Domínguez L, Fujii MT, Manta E (2006) Bisabolanes from the red algaLaurencia scoparia. J Nat Prod 69:1113
Norte M, Fernández JJ, Padilla A (1992) Bisabolane halogenated sesquiterpenes fromLaurencia. Phytochemistry 31:326
Brito I, Dias T, Díaz-Marrero AR, Darias J, Cueto M (2006) Aplysiadiol fromAplysia dactylomela suggested a key intermediate for a unified biogenesis of regular and irregular marine algal bisabolene-type metabolites. Tetrahedron 62:9655
Chang M, Vazquez JT, Nakanishi K, Cataldo F, Estrada DM, Fernandez J, Gallardo A, Martin JD, Norte M, Perez R (1989) Regular and irregular sesquiterpenes containing a halogenated hydropyran fromLaurencia caespitosa. Phytochemistry 28:1417
Lhullier C, Falkenberg M, Ioannou E, Quesada A, Papazafiri P, Horta PA, Schenkel EP, Vagias C, Roussis V (2010) Cytotoxic halogenated metabolites from the Brazilian red algaLaurencia catarinensis. J Nat Prod 73:27
Hollenbeak KH, Schmitz FJ, Hossain MB, van der Helm D (1979) Marine natural products. Deodactol, antineoplastic sesquiterpenoid from the sea hareAplysia dactylomela. Tetrahedron 35:541
Gopichand Y, Schmitz FJ, Shelly J, Rahman A, Van Der Helm D (1981) Halogenated acetylenic ethers from the sea hareAplysia dactylomela. J Org Chem 46:5192
De Carvalho LR, Fujii MT, Roque NF, Lago JHG (2006) Aldingenin derivatives from the red algaLaurencia aldingensis. Phytochemistry 67:1331
Takahashi S, Yasuda M, Nakamura T, Hatano K, Matsuoka K, Koshino H (2014) Synthesis and structural revision of a brominated sesquiterpenoid, aldingenin C. J Org Chem 79:9373
González AG, Darias J, Martín JD (1973) Caespitol, a new halogenated sesquiterpene fromLaurencia caespitosa. Tetrahedron Lett 14:2381
González AG, Darias J, Martín JD, Pérez C (1974) Revised structure of caespitol and its correlation with isocaespitol. Tetrahedron Lett 15:1249
Masuda M, Kogame K, Arisawa S, Suzuki M (1998) Morphology and halogenated secondary metabolites of three Gran Canarian species ofLaurencia (Ceramiales, Rhodophyra). Bot Mar 41:265
de Carvalho LR, Fujii MT, Roque NF, Kato MJ, Lago JHG (2003) Aldingenin A, new brominated sesquiterpene from red algaeLaurencia aldingensis. Tetrahedron Lett 44:2637
Mukhina OA, Koshino H, Crimmins MT, Kutateladze AG (2015) Computationally driven reassignment of the structures of aldingenins A and B. Tetrahedron Lett 56:4900
Schmitz FJ, Michaud DP, Hollenbeak KH (1980) Marine natural products: dihydroxydeodactol monoacetate, a halogenated sesquiterpene ether from the sea hareAplysia dactylomela. J Org Chem 45:1525
González AG, Martín JD, Pérez C, Ramírez MA, Ravelo F (1980) Total synthesis of 8-desoxy-isocaespitol, a new polyhalogenated sesquiterpene fromLaurencia caespitosa. Tetrahedron Lett 21:187
González AG, Darias J, Martín JD, Pérez C, Sims JJ, Lin GHY, Wing RM (1975) Isocaespitol, a new halogenated sesquiterpene fromLaurencia caespitosa. Tetrahedron 31:2449
González AG, Martín JD, Melián MA (1976) Synthesis of marine terpenoids III. Synthesis of (±)-isocaespitol. Tetrahedron Lett 17:2279
González AG, Darias V, Estévez E (1982) Chemotherapeutic activity of polyhalogenated terpenes from Spanish algae. Planta Med 44:44
Yang J, Tummatorn J, Slegeris R, Tlais SF, Dudley GB (2011) Synthesis of the tricyclic core of aldingenin B by oxidative cyclo-ketalization of an alkyne-diol. Org Lett 13:2065
Crimmins MT, Hughes CO (2012) Total synthesis of the proposed structure of aldingenin B. Org Lett 14:2168
Estrada DM, Martín JD, Pérez R, Rivera P, Rodríguez ML, Ruano JZ (1987) Furocaespitane and related C12 metabolites fromLaurencia caespitosa. Tetrahedron Lett 28:687
González AG, Darias J, Martín JD (1973) Furocaespitane, a new furan fromLaurencia caespitosa. Tetrahedron Lett 14:3625
González AG, Martín JD, Norte M, Pérez R, Rivera P, Ruano JZ, Rodríguez ML, Fayos J, Perales A (1983) X-Ray structure determination of new brominated metabolites isolated from the red seaweedLaurencia obtusa. Tetrahedron Lett 24:4143
Erickson KL, Beutler JA, Gray GN, Cardellina JH II, Boyd MR (1995) Majapolene A, a cytotoxic peroxide, and related sesquiterpenes from the red algaLaurencia majuscula. J Nat Prod 58:1848
Monde K, Taniguchi T, Miura N, Vairappan CS, Suzuki M (2006) Absolute configurations of brominated sesquiterpenes determined by vibrational circular dichroism. Chirality 18:335
Brito I, Dias T, Díaz-Marrero AR, Darias J, Cueto M (2007) Corrigendum to “Aplysiadiol fromAplysia dactylomela suggested a key intermediate for a unified biogenesis of regular and irregular marine algal bisabolene-type metabolites”. Tetrahedron 63:3908
Iliopoulou D, Roussis V, Pannecouque C, De Clercq E, Vagias C (2002) Halogenated sesquiterpenes from the red algaLaurencia obtusa. Tetrahedron 58:6749
González AG, Darias J, Martín JD (1977) Biomimetic interconversions of two new types of metabolite fromLaurencia perforata. Tetrahedron Lett 18:3375
Howard BM, Fenical W (1979) Guadalupol and epiguadalupol, rearranged sesquiterpene alcohols fromLaurencia snyderiae var.guadalupensis. Phytochemistry 18:1224
González AG, Darias J, Martín JD, Melián MA (1978) Total synthesis of racemic perforenone and 3-debromo-perforatone. Tetrahedron Lett 19:481
Majetich G, Ringold C (1987) A stereospecific synthesis of (±)-perforenone. Heterocycles 25:271
González AG, Aguiar JM, Martín JD, Norte M (1975) Three new sesquiterpenoids from the marine algaLaurencia perforata. Tetrahedron Lett 16:2499
Wright AD, Goclik E, König GM (2003) Three new sesquiterpenes from the red algaLaurencia perforata. J Nat Prod 66:435
González AG, Aguiar JM, Darias J, González E, Martín JD, Martín VS, Pérez C, Fayos J, Martínez-Ripoll M (1978) Perforenol, a new polyhalogenated sesquiterpene fromLaurencia perforata. Tetrahedron Lett 19:3931
González AG, Aguiar JM, Martín JD, Rodríguez ML (1976) Perforene, a new halogenated sesquiterpene from the red algaLaurencia perforata. Tetrahedron Lett 17:205
Coll JC, Skelton BW, White AH, Wright AD (1989) Tropical marine algae V. The structure determination of two novel sesquiterpenes from the red algaLaurencia tenera (Rhodophyceae, Ceramiales, Rhodomelaceae). Aust J Chem 42:1695
Wright AD, König GM, Sticher O, Rüegger H (1992) The application of two-dimensional nuclear magnetic resonance methodologies to the structure solution of the new natural product tenerol acetate fromLaurencia tenera. Phytochem Anal 3:263
Caccamese S, Amico V, Neri P (1990) Two new rearranged sesquiterpenoids from the red algaLaurencia obtusa. J Nat Prod 53:1287
Iliopoulou D, Vagias C, Galanakis D, Argyropoulos D, Roussis V (2002) Brasilane-type sesquiterpenoids fromLaurencia obtusa. Org Lett 4:3263
Stallard MO, Fenical W, Kittredge JS (1978) The brasilenols, rearranged sesquiterpene alcohols isolated from the marine opisthobranchAplysia brasiliana. Tetrahedron 34:2077
Manzo E, Ciavatta ML, Gavagnin M, Puliti R, Mollo E, Guo YW, Mattia CA, Mazzarella L, Cimino G (2005) Structure and absolute stereochemistry of novel C15-halogenated acetogenins from the anaspidean molluscAplysia dactylomela. Tetrahedron 61:7456
Greene AE, Serra AA, Barreiro EJ, Costa PRR (1987) Expeditious, stereocontrolled syntheses of racemic and natural brasilenol through intramolecular asymmetry transfer. Absolute stereochemistry of brasilenol. J Org Chem 52:1169
Greene AE, Coelho F, Barreiro EJ, Costa PRR (1986) A selective synthesis of brasilenol, a novel sesquiterpene from the sea hareAplysia brasiliana and the red algaLaurencia obtusa. J Org Chem 51:4250
Amico V, Caccamese S, Neri P, Russo G, Foti M (1991) Brasilane-type sesquiterpenoids from the Mediterranean red algaLaurencia obtusa. Phytochemistry 30:1921
Mihopoulos N, Vagias C, Scoullos M, Roussis V (1999) Laurencienyne B, a new acetylenic cyclic ether from the red algaLaurencia obtusa. Nat Prod Lett 13:151
Tori M, Nakashima K, Seike M, Asakawa Y, Wright AD, König GM, Sticher O (1994) Revised structure of a brasilane-type sesquiterpene isolated from the red algaLaurencia implicata and its absolute configuration. Tetrahedron Lett 35:3105
Aydoğmuş Z, Imre S, Ersoy L, Wray V (2004) Halogenated secondary metabolites fromLaurencia obtusa. Nat Prod Res 18:43
Suzuki T, Suzuki M, Kurosawa E (1975) α-Bromocuparene and α-isobromocuparene, new bromo compounds fromLaurencia species. Tetrahedron Lett 16:3057
Coll JC, Wright AD (1989) Tropical marine algae IV. Novel metabolites from the red algaLaurencia implicata (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust J Chem 42:1685
Wright AD, König GM, de Nys R, Sticher O (1993) Seven new metabolites from the marine red algaLaurencia majuscula. J Nat Prod 56:394
Sun HH, Erickson KL (1978) Sesquiterpenoids from the Hawaiian marine algaLaurencia nidifica. 7. (+)-Selin-4,7(11)-diene. J Org Chem 43:1613
Fukuzawa A, Aye M, Takaya Y, Masamune T, Murai A (1990) A sesquiterpene alcohol from the red algaLaurencia nipponica. Phytochemistry 29:2337
Dieter RK, Kinnel R, Meinwald J, Eisner T (1979) Brasudol and isobrasudol, two bromosesquiterpenes from a sea hare (Aplysia brasiliana). Tetrahedron Lett 20:1645
Brennan MR, Erickson KL (1982) Austradiol acetate and austradiol diacetate, 4,6-dihydroxy-(+)-selinane derivatives from an AustralianLaurencia sp. J Org Chem 47:3917
Rochfort SJ, Capon RJ (1996) Parguerenes revisited: new brominated diterpenes from the southern Australian marine red algaLaurencia filiformis. Aust J Chem 49:19
Suzuki M, Takahashi Y, Mitome Y, Itoh T, Abe T, Masuda M (2002) Brominated metabolites from an OkinawanLaurencia intricata. Phytochemistry 60:861
Alarif WM, Al-Footy KO, Zubair MS, Halid PHM, Ghandourah MA, Basaif SA, Al-Lihaibi SS, Ayyad SEN, Badria FA (2016) The role of new eudesmane-type sesquiterpenoid and known eudesmane derivatives from the red algaLaurencia obtusa as potential antifungal-antitumour agents. Nat Prod Res 30:1150
Howard BM, Fenical W (1977) Structure, chemistry and absolute configuration of (–)-(1S,4R)-bromo-hydoxy-selin-7-ene from a marine red algaLaurencia sp. J Org Chem 42:2518
Rose AF, Sims JJ, Wing RM, Wiger GM (1978) Marine natural products. XVII. The structure of (1S,4R,7R)-1-bromo-4-hydroxy-7-chloroselinane, a metabolite of the marine algaLaurencia sp. Tetrahedron Lett 19:2533
Kazlauskas R, Murphy PT, Wells RJ, Daly JJ, Oberhänsli WE (1977) Heterocladol, a halogenated selinane sesquiterpene of biosynthetic significance fromLaurencia filiformis: its isolation, crystal structure and absolute configuration. Aust J Chem 30:2679
Baker B, Ratnapala L, Mahindaratne MPD, de Silva ED, Tillekeratne LMV, Jeong JH, Scheuer PJ, Seff K (1988) Lankalapuol A and B: twocis-eudesmanes from the sea hareAplysia dactylomela. Tetrahedron 44:4695
Suzuki T, Furusaki A, Kikuchi H, Kurosawa E, Katayama C (1981) The absolute configuration of cycloeudesmol from the red algaLaurencia nipponica Yamada. Tetrahedron Lett 22:3423
Fenical W, Sims JJ (1974) Cycloeudesmol, an antibiotic cyclopropane containing sesquiterpene from the marine algaChondria oppositiclada Dawson. Tetrahedron Lett 15:1137
Guella G, Skropeta D, Mancini I, Pietra F (2002) The first 6,8-cycloeudesmane sesquiterpene from a marine organism: the red seaweedLaurencia microcladia from the Baia di Calenzana, Elba Island. Z Naturforsch 57B:1147
Li C, Li X, Cui C, Wang B (2010) Brominated metabolites from the marine red algaLaurencia similis. Z Naturforsch 65B:87
Kamada T, Vairappan CS (2013) New bioactive secondary metabolites from Bornean red algaLaurencia similis (Ceramiales). Nat Prod Commun 8:287
Rahelivao MP, Gruner M, Andriamanantoanina H, Andriamihaja B, Bauer I, Knölker HJ (2015) Red algae (Rhodophyta) from the coast of Madagascar: preliminary bioactivity studies and isolation of natural products. Mar Drugs 13:4197
Ji NY, Li XM, Ding LP, Wang BG (2007) Two new aristolane sesquiterpenes fromLaurencia similis. Chin Chem Lett 18:178
Imre S, Islimyeli S, Öztunc A, Thomson RH (1981) Obtusenol, a sesquiterpene fromLaurencia obtusa. Phytochemistry 20:833
González AG, Martín JD, Pérez C, Ramírez MA, Ravelo F (1981) Total synthesis of obtusenol. Tetrahedron Lett 22:5071
Takeda S, Iimura Y, Tanaka K, Kurosawa E, Suzuki T (1990) A new naturally occurring racemic compound from the marine red algaLaurencia obtusa (Hudson) Lamouroux. Chem Lett 19:155
Suzuki T, Kurosawa E (1979) New bromo-acetal from the marine algaLaurencia nipponica Yamada. Chem Lett 8:301
Kurata K, Suzuki T, Suzuki M, Kurosawa E, Furusaki A, Matsumoto T (1983) Laureacetal-D and -E, two new secochamigrane derivatives from the red algaLaurencia nipponica Yamada. Chem Lett 12:557
Kurata K, Suzuki T, Suzuki M, Kurosawa E (1983) Laureacetal-C, an unusual secochamigrane sesquiterpene from the red algaLaurencia nipponica Yamada. Chem Lett 12:29
Fenical W, Schulte GR, Finer J, Clardy J (1978) Poitediol, a new nonisoprenoid sesquiterpene diol from the marine algaLaurencia poitei. J Org Chem 43:3628
Schmitz FJ, Hollenbeak KH, Vanderah DJ (1978) Marine natural products: dactylol, a new sesquiterpene alcohol from a sea hare. Tetrahedron 34:2719
Gadwood RC (1985) Stereoelectronic effects in cyclo-octanes: synthesis of (±)-dactylol and (±)-isodactylol. J Chem Soc Chem Commun:123
Feldman KS, Wu MJ, Rotella DP (1990) Total synthesis of (±)-dactylol and related studies. J Am Chem Soc 112:8490
Molander GA, Eastwood PR (1995) Total synthesis of (+)-dactylol via a novel [3+5] annulation approach. J Org Chem 60:4559
Fürstner A, Langemann K (1996) A concise total synthesis of dactylol via ring closing metathesis. J Org Chem 61:8746
Gadwood RC, Lett RM, Wissinger JE (1984) Total synthesis of (±)-poitediol and (±)-4-epipoitediol. J Am Chem Soc 106:3869
Hall SS, Faulkner DJ, Fayos J, Clardy J (1973) Oppositol, a brominated sesquiterpene alcohol of a new skeletal class from the red algaLaurencia subopposita. J Am Chem Soc 95:7187
Fukuzawa A, Sato H, Masamune T (1987) Synthesis of (±)-prepinnaterpene, a bromoditerpene from the red algaLaurencia pinnata Yamada. Tetrahedron Lett 28:4303
Kim D, Kim IH (1997) A stereoselective total synthesis of (±)-oppositol by a doubly diastereoselective intramolecular ester enolate alkylation. Tetrahedron Lett 38:415
Wijesinghe WAJP, Kang MC, Lee WW, Lee HS, Kamada T, Vairappan CS, Jeon YJ (2014) 5β-Hydroxypalisadin B isolated from red algaLaurencia snackeyi attenuates inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophages. Algae 29:333
Kurata K, Suzuki T, Suzuki M, Kurosawa E, Furusaki A, Matsumoto T (1983) Laurencial, a novel sesquiterpene α,β-unsaturated aldehyde from the red algaLaurencia nipponica Yamada. Chem Lett 12:299
Miyashita K, Tanaka A, Shintaku H, Iwata C (1998) Regiospecific bromination-cyclization ofspirocyclic cyclohexanones and its application to the synthesis of (±)-laurencial. Tetrahedron 54:1395
Suzuki M, Kurosawa E, Irie T (1970) Spirolaurenone, a new sesquiterpenoid containing bromine fromLaurencia glandulifera Kützing. Tetrahedron Lett 11:4995
Suzuki M, Kowata N, Kurosawa E (1980) The structure ofspirolaurenone, a halogenated sesquiterpenoid from the red algaLaurencia glandulifera Kützing. Tetrahedron 36:1551
Murai A, Kato K, Masamune T (1982) Total synthesis of (±)-spirolaurenone. Tetrahedron Lett 23:2887
Fukuzawa A, Matsue H, Masamune T, Furusaki A, Katayama C, Matsumoto T (1984) Laurenones A and B, new sesquiterpenes from the red algaLaurencia nipponica Yamada. Chem Lett 13:1349
Gressler V, Stein EM, Dӧrr F, Fujii MT, Colepicolo P, Pinto E (2011) Sesquiterpenes from the essential oil ofLaurencia dendroidea (Ceramiales, Rhodophyta): isolation, biological activities and distribution among seaweeds. Braz J Pharmacogn 21:248
Norte M, Fernández JJ, Souto ML (1994) Viridianol, a rearranged sesquiterpene with a novel carbon skeleton fromLaurencia viridis. Tetrahedron Lett 35:4607
Xu X, Zeng L, Su J (1997) Tricyclic sesquiterpene fromLaurencia majuscula. Chem Res Chin Univ 13:176
Brito I, Cueto M, Dorta E, Darias J (2002) Bromocyclococanol, a halogenated sesquiterpene with a novel carbon skeleton from the red algaLaurencia obtusa. Tetrahedron Lett 43:2551
Guella G, Skropeta D, Breuils S, Mancini I, Pietra F (2001) Calenzanol, the first member of a new class of sesquiterpene with a novel skeleton isolated from the red seaweedLaurencia microladia from the Bay of Calenzana, Elba Island. Tetrahedron Lett 42:723
Guella G, Skropeta D, Mancini I, Pietra F (2003) Calenzanane sesquiterpenes from the red seaweedLaurencia microcladia from the Bay of Calenzana, Elba Island: acid-catalyzed stereospecific conversion of calenzanol into indene- and guaiazulene-type sesquiterpenes. Chem Eur J 9:5770
Caccamese S, Amico V, Neri P, Foti M (1991) The structure of laurobtusol, a new rearranged sesquiterpenoid from the Mediterranean red algaLaurencia obtusa. Tetrahedron 47:10101
Blanchfield JT, Chow S, Bernhardt PV, Kennard CHL, Kitching W (2004) Concerning the proposed structure of (+)-laurobtusol: spectral discrepancies with synthetic, racemic stereoisomers. Aust J Chem 57:673
González AG, Martín JD, Martín VS, Pérez R, Drexler SA, Clardy J (1984) Structure of güimarediol, a new rearranged sesquiterpenoid from the red algaLaurencia sp. Chem Lett 13:1865
Díaz-Marrero AR, Brito I, de la Rosa JM, Darias J, Cueto M (2008) Gomerones A-C, halogenated sesquiterpenoids with a novel carbon skeleton fromLaurencia majuscula. Tetrahedron 64:10821
Huwyler N, Carreira EM (2012) Total synthesis and stereochemical revision of the chlorinated sesquiterpene (±)-gomerone C. Angew Chem Int Ed 51:13066
González AG, Martín JD, Martín VS, Pérez R, Tagle B, Clardy J (1985) Rhodolaureol and rhodolauradiol, two new halogenated tricyclic sesquiterpenes from a marine alga. J Chem Soc Chem Commun:260
González AG, Martín JD, Martín VS, Norte M, Pérez R (1982) Bioimetic approach to the syntheses of rhodolaureol and rhodolauradiol. Tetrahedron Lett 23:2395
Fedorov SN, Radchenko OS, Shubina LK, Kalinovsky AI, Gerasimenko AV, Popov DY, Stonik VA (2001) Aplydactone, a new sesquiterpenoid with an unprecedented carbon skeleton from the sea hareAplysia dactylomela, and its Cargill-like rearrangement. J Am Chem Soc 123:504
Guella G, Chiasera G, Pietra F (1992) Conformational studies of marine polyhalogenated α-chamigrenes using temperature-dependent NMR spectra. Cyclohexene-ring flipping and rigid-chair cyclohexane ring in the presence of equatorial halogen atoms at C(8) and C(9). Helv Chim Acta 75:2012
Guella G, Chiasera G, Pietra F (1992) Conformational studies of marine polyhalogenated α-chamigrenes using temperature-dependent NMR spectra. Inverted-chair and twist-boat cyclohexane moieties in the presence of an axial halogen atom at C(8). Helv Chim Acta 75:2026
González AG, Darias J, Martín JD, Martín VS, Norte M, Pérez C, Perales A, Fayos J (1980)Laurencia sesquiterpene biogenetic-type interconversions. Tetrahedron Lett 21:1151
Takeda S, Kurosawa E, Komiyama K, Suzuki T (1990) The structures of cytotoxic diterpenes containing bromine from the marine red algaLaurencia obtusa (Hudson) Lamouroux. Bull Chem Soc Jpn 63:3066
Bian WT, You ZJ, Wang CY, Shao CL (2014) Brominated pimarane diterpenoids from the sea hareAplysia pulmonica from the South China Sea. Chem Nat Comp 50:557
Kurata K, Taniguchi K, Agatsuma Y, Suzuki M (1998) Diterpenoid feeding-deterrents fromLaurencia saitoi. Phytochemistry 47:363
Tsukamoto S, Yamashita Y, Yoshida T, Ohta T (2004) Parguerol and isoparguerol isolated from the sea hareAplysia kurodai induce neurite outgrowth in PC-12 cells. Mar Drugs 2:170
Suzuki T, Takeda S, Hayama N, Tanaka I, Komiyama K (1989) The structure of brominated diterpene from the marine red algaLaurencia obtusa (Hudson) Lamouroux. Chem Lett 18:969
Ji NY, Li XM, Wang BG (2008) Halogenated terpenes and a C15 acetogenin from the marine red algaLaurencia saitoi. Molecules 13:2894
Masuda M, Takahashi Y, Matsuo Y, Suzuki M (1997) A taxonomic study of the genusLaurencia (Ceramiales, Rhodophyta) from Vietnam. II.Laurencia lageniformis sp. nov. Crypt Algol 18:163
Higgs MD, Faulkner DJ (1982) A diterpene fromLaurencia obtusa. Phytochemistry 21:789
Takeda S, Matsumoto T, Komiyama K, Kurosawa E, Suzuki T (1990) A new cytotoxic diterpene from the marine red algaLaurencia obtusa (Hudson) Lamouroux. Chem Lett 19:277
Suzuki M, Kurosawa E, Kurata K (1988) Venustanol, a brominated labdane diterpene from the red algaLaurencia venusta. Phytochemistry 27:1209
Yamamura S, Hirata Y (1971) A naturally-occurring bromo-compound, aplysin-20 fromAplysia kurodai. Bull Chem Soc Jpn 44:2560
Matsuda H, Tomiie Y, Yamamura S, Hirata Y (1967) The structure of aplysin-20. Chem Commun:898
Yamaguchi Y, Uyehara T, Kato T (1985) Biogenetic type synthesis of (±)-concinndiol and (±)-aplysin 20. Tetrahedron Lett 26:343
Murai A, Abiko A, Masamune T (1984) Total synthesis of (±)-aplysin-20. Tetrahedron Lett 25:4955
Ojika M, Kigoshi H, Yoshikawa K, Nakayama Y, Tamada K (1992) A new bromo diterpene,epi-aplysin-20, andent-isoconcinndiol from the marine molluscAplysia kurodai. Bull Chem Soc Jpn 65:2300
Sims JJ, Lin GHY, Wing RM, Fenical W (1973) Marine natural products. Concinndiol, a bromo-diterpene alcohol from the red algaLaurencia concinna. J Chem Soc Chem Commun:470
Howard BM, Fenical W (1980) Isoconcinndiol, a brominated diterpenoid fromLaurencia snyderae var.guadalupensis. Phytochemistry 19:2774
Rodríguez ML, Martín JD, Estrada D (1989) The absolute configuration of (+)-isoconcinndiol. Acta Crystallogr C45:306
Fujiwara S, Takeda K, Uyehara T, Kato T (1986) Structural revision of isoconcinndiol by its synthesis. Chem Lett 15:1763
Fukuzawa A, Miyamoto M, Kumagai Y, Abiko A, Takaya Y, Masamune T (1985) Structure of new bromoditerpenes, pinnatols, from the marine red algaLaurencia pinnata Yamada. Chem Lett 14:1259
González AG, Ciccio JF, Rivera AP, Martín JD (1985) New halogenated diterpenes from the red algaLaurencia perforata. J Org Chem 50:1261
Yamamura S, Terada Y (1977) Isoaplysin-20, a natural bromine-containing diterpene, fromAplysia kurodai. Tetrahedron Lett 18:2171
Imamura PM, Rúveda EA (1980) The C-13 configuration of the bromine-containing diterpene isoaplysin-20. Synthesis of debromoisoaplysin-20 and its C-13 epimer. J Org Chem 45:510
Nishizawa M, Takenaka H, Hirotsu K, Higuchi T, Hayashi Y (1984) Synthesis and structure determination of isoaplysin-20. J Am Chem Soc 106:4290
Nishizawa M, Takenaka H, Hayashi Y (1986) Chemical simulation of polycyclic diterpenoid biosynthesis using mercury (II) triflate/N,N-dimethylaniline complex: mechanistic aspects of a biomimetic olefin cyclization. J Org Chem 51:806
Briand A, Kornprobst JM, Aleasa HS, Rizk AFM, Toupet L (1997) (–)-Paniculatol, a newent-labdane bromoditerpene fromLaurencia paniculata. Tetrahedron Lett 38:3399
Iliopoulou D, Mihopoulos N, Roussis V, Vagias C (2003) New brominated labdane diterpenes from the red algaLaurencia obtusa. J Nat Prod 66:1225
Kuniyoshi M, Marma MS, Higa T, Bernardinelli G, Jefford CW (2000) 3-Bromobarekoxide, an unusual diterpene fromLaurencia luzonensis. Chem Commun:1155
Justicia J, Oller-Lopez JL, Campana AG, Oltra JE, Cuerva JM, Bunuel E, Cardenas DJ (2005) 7-endo radical cyclizations catalyzed by titanocene(III). Straightforward synthesis of terpenoids with seven-membered carbocycles. J Am Chem Soc 127:14911
Howard BM, Fenical W (1978) Structures of the irieols, new dibromoditerpenoids of a unique skeletal class fromLaurencia irieii. J Org Chem 43:4401
Fukuzawa A, Takaya Y, Matsue H, Masamune T (1985) Structure of a new bromoditerpene, prepinnaterpene, from the marine red algaLaurencia pinnata Yamada. Chem Lett 14:1263
Fenical W, Howard B, Gifkins KB, Clardy J (1975) Irieol A and iriediol, dibromoditerpenes of a new skeletal class fromLaurencia. Tetrahedron Lett 16:3983
Howard BM, Fenical W, Donovan SF, Clardy J (1982) Neoirieone, a diterpenoid of a new skeletal class from the red marine algaLaurencia cf.irieii. Tetrahedron Lett 23:3847
Fukuzawa A, Kumagai Y, Masamune T, Furusaki A, Matsumoto T, Katayama C (1982) Pinnaterpenes A, B and C, new dibromoditerpenes from the red algaLaurencia pinnata Yamada. Chem Lett 11:1389
Ji NY, Li XM, Cui CM, Wang BG (2007) Two new brominated diterpenes fromLaurencia decumbens. Chin Chem Lett 18:957
Pettit GR, Herald CL, Einck JJ, Vanell LD, Brown P, Gust D (1978) Isolation and structure of angasiol. J Org Chem 43:4685
Atta-ur-Rahman, Alvi KA, Abbas SA, Sultana T, Shameel M, Choudhary MI, Clardy JC (1991) A diterpenoid lactone fromAplysia juliana. J Nat Prod 54:886
Takahashi H, Takahashi Y, Suzuki M, Abe T, Masuda M (2010) Neoirietriol. Acta Crystallogr E66:o1795
Takahashi Y, Daitoh M, Suzuki M, Abe T, Masuda M (2002) Halogenated metabolites from the new Okinawan red algaLaurencia yonaguniensis. J Nat Prod 65:395
Takahashi H, Takahashi Y, Suzuki M, Abe T, Masuda M (2007) Crystal structure and absolute stereochemistry of neoirietetraol. Anal Sci 23:x103
Petraki A, Ioannou E, Papazafiri P, Roussis V (2015) Dactylomelane diterpenes from the sea hareAplysia depilans. J Nat Prod 78:462
Fernández JJ, Souto ML, Gil LV, Norte M (2005) Isolation of naturally occurring dactylomelane metabolites asLaurencia constituents. Tetrahedron 61:8910
Estrada DM, Ravelo JL, Ruiz-Pérez C, Martín JD (1989) Dactylomelol, a new class of diterpene from the sea hareAplysia dactylomela. Tetrahedron Lett 30:6219
Guella G, Marchetti F, Pietra F (1997) Rogioldiol A, a new obtusane diterpene, and rogiolal, a degraded derivative, of the red seaweedLaurencia microcladia from Il Rogiolo along the coast of Tuscany: a synergism in structural elucidation. Helv Chim Acta 80:684
Schmitz FJ, Hollenbeak KH, Carter DC, Hossain MB, van der Helm D (1979) Marine natural products: 14-bromoobtus-1-ene-3,11-diol, a new diterpenoid from the sea hareAplysia dactylomela. J Org Chem 44:2445
Guella G, Pietra F (1998) Antipodal pathways to secondary metabolites in the same eukaryotic organism. Chem Eur J 4:1692
Mohammed KA, Hossain CF, Zhang L, Bruick RK, Zhou YD, Nagle DG (2004) Laurenditerpenol, a new diterpene from the tropical marine algaLaurencia intricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. J Nat Prod 67:2002
Jung ME, Im G-YJ (2009) Total synthesis of racemic laurenditerpenol, an HIF-1 inhibitor. J Org Chem 74:8739
Jung ME, Im G-YJ (2008) Convergent total synthesis of the racemic HIF-1 inhibitor laurenditerpenol. Tetrahedron Lett 49:4962
Chittiboyina AG, Kumar GM, Carvalho PB, Liu Y, Zhou Y-D, Nagle DG, Avery MA (2007) Total synthesis and absolute configuration of laurenditerpenol: a hypoxia inducible factor-1 activation inhibitor. J Med Chem 50:6299
Mukherjee S, Scopton AP, Corey EJ (2010) Enantioselective pathway for the synthesis of laurenditerpenol. Org Lett 12:1836
Pitsinos EN, Athinaios N, Vidali VP (2012) Enantioselective total synthesis of (-)-laurenditerpenol. Org Lett 14:4666
Mihopoulos N, Vagias C, Mikros E, Scoullos M, Roussis V (2001) Prevezols A and B: new brominated diterpenes from the red algaLaurencia obtusa. Tetrahedron Lett 42:3749
Iliopoulou D, Mihopoulos N, Vagias C, Papazafiri P, Roussis V (2003) Novel cytotoxic brominated diterpenes from the red algaLaurencia obtusa. J Org Chem 68:7667
Leung AE, Rubbiani R, Gasser G, Tuck KL (2014) Enantioselective total syntheses of the proposed structures of prevezol B and evaluation of anti-cancer activity. Org Biomol Chem 12:8239
Leung AE, Blair M, Forsyth CM, Tuck KL (2013) Synthesis of the proposed structures of prevezol C. Org Lett 15:2198
Blair M, Forsyth CM, Tuck KL (2010) Towards the synthesis of prevezol C: total enantioselective synthesis of (–)-2-epi-prevezol C. Tetrahedron Lett 51:4808
Guella G, Pietra F (2000) A new-skeleton diterpenoid, new prenylbisabolanes, and their putative biogenetic precursor, from the red seaweedLaurencia microcladia from Il Rogiolo: assigning the absolute configuration when two chiral halves are connected by single bonds. Helv Chim Acta 83:2946
Chatter R, Kladi M, Tarhouni S, Maatoug R, Kharrat R, Vagias C, Roussis V (2009) Neorogioltriol: a brominated diterpene with analgesic activity fromLaurencia glandulifera. Phytochem Lett 2:25
Norte M, Souto ML, Fernández JJ (1996) Viridiols, two new diterpenes fromLaurencia viridis. Nat Prod Lett 8:263
Caccamese S, Toscano RM, Cerrini S, Gavuzzo E (1982) Laurencianol, a new halogenated diterpenoid from marine algaLaurencia obtusa. Tetrahedron Lett 23:3415
Kladi M, Ntountaniotis D, Zervou M, Vagias C, Ioannou E, Roussis V (2014) Glandulaurencianols A-C, brominated diterpenes from the red algaLaurencia glandulifera and the sea hareAplysia punctata. Tetrahedron Lett 55:2835
Brennan MR, Kim IK, Erickson KL (1993) Kahukuenes, new diterpenoids from the marine algaLaurencia majuscula. J Nat Prod 56:76
Chatter R, Cenac N, Roussis V, Kharrat R, Vergnolle N (2012) Inhibition of sensory afferents activation and visceral pain by a brominated diterpene. Neurogastroenterol Motil 24, e336
Ojika M, Yoshida Y, Okumura M, Ieda S, Yamada K (1990) Aplysiadiol, a new brominated diterpene from the marine molluscAplysia kurodai. J Nat Prod 53:1619
Niwa H, Ieda S, Inagaki H, Yamada K (1990) A biogenetic-type synthesis of (±)-aplysiadiol, a brominated diterpene isolated from the marine molluscAplysia kurodai. Tetrahedron Lett 31:7157
Sun J, Han LJ, Yang RY, Shi DY, Uan ZH, Shi JG (2007) Studies on chemical constituents ofLaurencia tristicha. Chin J Chin Mat Med 32:2610
Mahdi F, Falkenberg M, Ioannou E, Roussis V, Zhou YD, Nagle DG (2011) Thyrsiferol inhibits mitochondrial respiration and HIF-1 activation. Phytochem Lett 4:75
Ji NY, Li XM, Xie H, Ding J, Li K, Ding LP, Wang BG (2008) Highly oxygenated triterpenoids from the marine red algaLaurencia mariannensis (Rhodomelaceae). Helv Chim Acta 91:1940
Suzuki T, Suzuki M, Furusaki A, Matsumoto T, Kato A, Imanaka Y, Kurosawa E (1985) Teurilene and thyrsiferyl 23-acetate,meso and remarkably cytotoxic compounds from the marine red algaLaurencia obtusa (Hudson) Lamouroux. Tetrahedron Lett 26:1329
Blunt JW, Hartshorn MP, McLennan TJ, Munro MHG, Robinson WT, Yorke SC (1978) Thyrsiferol, a squalene-derived metabolite ofLaurencia thyrsifera. Tetrahedron Lett 19:69
Blunt JW, McCombs JD, Munro MHG, Thomas FN (1989) Complete assignment of the13C and1H nmr spectra of thyrsiferyl acetate. Magn Reson Chem 27:792
Sakemi S, Higa T, Jefford CW, Bernardinelli G (1986) Venustatriol, a new antiviral triterpene tetracyclic ether fromLaurencia venusta. Tetrahedron Lett 27:4287
Fernández JJ, Souto ML, Norte M (1998) Evaluation of the cytotoxic activity of polyethers isolated fromLaurencia. Bioorg Med Chem 6:2237
Manzo E, Gavagnin M, Bifulco G, Cimino P, Di Micco S, Ciavatta ML, Guo YW, Cimino G (2007) Aplysiols A and B, squalene-derived polyethers from the mantle of the sea hareAplysia dactylomela. Tetrahedron 63:9970
Broka CA, Hu L, Lee WJ, Shen T (1987) Synthetic studies on thyrsiferol. Tetrahedron Lett 28:4993
Broka CA, Lin Y (1988) Synthetic studies on thyrsiferol. Elaboration of the bromotetrahydropyran ring. J Org Chem 53:5876
Hashimoto M, Kan T, Nozaki K, Yanagiya M, Shirahama H, Matsumoto T (1990) Total syntheses of (+)-thyrsiferol, (+)-thyrsiferyl 23-acetate, and (+)-venustatriol. J Org Chem 55:5088
González IC, Forsyth CJ (2000) Total synthesis of thyrsiferyl 23-acetate, a specific inhibitor of protein phosphatase 2A and an anti-leukemic inducer of apoptosis. J Am Chem Soc 122:9099
Norte M, Fernández JJ, Souto ML (1997) New polyether squalene derivatives fromLaurencia. Tetrahedron 53:4649
Cen-Pacheco F, Mollinedo F, Villa-Pulgarín JA, Norte M, Fernández JJ, Daranas AH (2012) Saiyacenols A and B: the key to solve the controversy about the configuration of aplysiols. Tetrahedron 68:7275
Suzuki T, Hasegawa M, Hirayama Y, Takahashi Y, Matsuo Y (1995) The structure of squalene-derived polyether, 15(28)-anhydrothyrsiferyl 23-acetate isolated from the marine red algaLaurencia obtusa (Hudson) Lamouroux. J Hokkaido Univ Ed Sect II A 46:57
Suzuki T, Takeda S, Suzuki M, Kurosawa E, Kato A, Imanaka Y (1987) Cytotoxic squalene-derived polyethers from the marine red algaLaurencia obtusa (Hudson) Lamouroux. Chem Lett 16:361
Manríquez CP, Souto ML, Gavín JA, Norte M, Fernández JJ (2001) Several new squalene-derived triterpenes fromLaurencia. Tetrahedron 57:3117
Souto ML, Manríquez CP, Norte M, Fernández JJ (2002) Novel marine polyethers. Tetrahedron 58:8119
Norte M, Fernández JJ, Souto ML, García-Grávalos MD (1996) Two new antitumoral polyether squalene derivatives. Tetrahedron Lett 37:2671
Matsuo Y, Suzuki M, Masuda M, Iwai T, Morimoto Y (2008) Squalene-derived triterpene polyethers from the red algaLaurencia omaezakiana. Helv Chim Acta 91:1261
Corey EJ, Ha D-C (1988) Total synthesis of venustatriol. Tetrahedron Lett 29:3171
Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Martín MN, Fernández JJ, Hernádez Daranas AH (2011) New polyether triterpenoids fromLaurencia viridis and their biological evaluation. Mar Drugs 9:2220
Cen-Pacheco F, Santiago-Benítez AJ, García C, Álvarez-Méndez SJ, Martín-Rodríguez AJ, Norte M, Martín VS, Gavín JA, Fernández JJ, Daranas AH (2015) Oxasqualenoids fromLaurencia viridis: combined spectroscopic-computational analysis and antifouling potential. J Nat Prod 78:712
Ola ARB, Babey AM, Motti C, Bowden BF (2010) Aplysiols C-E, brominated triterpene polyethers from the marine algaChondria armata and a revision of the structure of aplysiol B. Aust J Chem 63:907
Suzuki M, Matsuo Y, Takahashi Y, Masuda M (1995) Callicladol, a novel cytotoxic bromotriterpene polyether from a Vietnamese species of the red algal genusLaurencia. Chem Lett 24:1045
Vera B, Rodríguez AD, Avilés E, Ishikawa Y (2009) Aplysqualenols A and B: squalene-derived polyethers with antitumoral and antiviral activity from the Caribbean sea slugAplysia dactylomela. Eur J Org Chem 2009:5327
Norte M, Fernández JJ, Souto ML, Gavin JA, García-Grávalos MD (1997) Thyrsenols A and B, two unusual polyether squalene derivatives. Tetrahedron 53:3173
Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Norte M, Daranas AH, Fernández JJ (2011) Cytotoxic oxasqualenoids from the red algaLaurencia viridis. Eur J Med Chem 46:3302
Cen-Pacheco F, Nordström L, Souto ML, Martín MN, Fernández JJ, Daranas AH (2010) Studies on polyethers produced by red algae. Mar Drugs 8:1178
Hioki H, Motosue M, Mizutani Y, Noda A, Shimoda T, Kubo M, Harada K, Fukuyama Y, Kodama M (2009) Total synthesis of pseudodehydrothyrsiferol. Org Lett 11:579
Clausen DJ, Wan S, Floreancig PE (2011) Total synthesis of the protein phosphatase 2A inhibitor lactodehydrothyrsiferol. Angew Chem Int Ed 50:5178
Suenaga K, Shibata T, Takada N, Kigoshi H, Yamada K (1998) Aurilol, a cytotoxic bromoditerpene isolated from the sea hareDolabella auricularia. J Nat Prod 61:515
Morimoto Y, Nishikawa Y, Takaishi M (2005) Total synthesis and complete assignment of the stereostructure of a cytotoxic bromoditerpene polyether (+)-aurilol. J Am Chem Soc 127:5806
Matsuo Y, Suzuki M, Masuda M (1995) Enshuol, a novel squalene-derived pentacyclic triterpene alcohol from a new species of the red algal genusLaurencia. Chem Lett 24:1043
Morimoto Y, Yata H, Nishikawa Y (2007) Assignment of the absolute configuration of the marine pentacyclic polyether (+)-enshuol by total synthesis. Angew Chem Int Ed 46:6481
Hashimoto M, Yanagiya M, Shirahama H (1988) Total synthesis ofmeso-triterpene ether, teurilene. Chem Lett 17:645
Hashimoto M, Harigaya H, Yanagiya M, Shirahama H (1991) Total synthesis of themeso-triterpene polyether teurilene. J Org Chem 56:2299
Iwai T, Kinoshita T, Morimoto Y (1998) Highly efficient total synthesis of cytotoxicmeso polyether teurilene featuring diastereoselective method for construction of tetrahydrofuran rings by means of rhenium (VII) oxide. Symp Chem Nat Prod 40:277
Morimoto Y, Iwai T, Kinoshita T (1999) Effective combination of two-directional synthesis and rhenium(VII) chemistry: total synthesis ofmeso polyether teurilene. J Am Chem Soc 121:6792
Morimoto Y, Iwai T, Kinoshita T (2002) Total synthesis of highly symmetric squalene-derived cytotoxic polyethers. J Synth Org Chem Jpn 60:1112
Rodríguez-López J, Crisóstomo FP, Ortega N, Rodríguez-López M, Martín VS, Martín T (2013) Epoxide-opening cascades triggered by a Nicholas reaction: total synthesis of teurilene. Angew Chem Int Ed 52:3659
Suzuki M, Matsuo Y, Takeda S, Suzuki T (1993) Intricatetraol, a halogenated triterpene alcohol from the red algaLaurencia intricata. Phytochemistry 33:651
Umezawa T, Oguri Y, Matsuura H, Yamazaki S, Suzuki M, Yoshimura E, Furuta T, Nogata Y, Serisawa Y, Matsuyama-Serisawa K, Abe T, Matsuda F, Suzuki M, Okino T (2014) Omaezallene from red algaLaurencia sp.: structure elucidation, total synthesis and antifouling activity. Angew Chem Int Ed 53:3909
Morimoto Y, Okita T, Takaishi M, Tanaka T (2007) Total synthesis and determination of the absolute configuration of (+)-intricatetraol. Angew Chem Int Ed 46:1132
Authors’ unpublished data
Kigoshi H, Ojika M, Shizuri Y, Niwa H, Yamada K (1986) Isolation of (10R,11R)-(+)-squalene-10,11-epoxide from the red algaLaurencia okamurai and its enantioselective synthesis. Tetrahedron 42:3789
Kigoshi H, Ojika M, Shizuri Y, Niwa H, Yamada K (1982) (10R,11R)-(+)-squalene-10,11-epoxide: isolation fromLaurencia okamurai and the asymmetric synthesis. Tetrahedron Lett 23:5413
Kigoshi H, Itoh T, Ogawa T, Ochi K, Okada M, Suenaga K, Yamada K (2001) Auriculol, a cytotoxic oxygenated squalene from the Japanese sea hareDolabella auricularia: isolation, stereostructure and synthesis. Tetrahedron Lett 42:7461
Xiong Z, Busch R, Corey EJ (2010) A short total synthesis of (+)-omaezakianol via an epoxide-initiated cationic cascade reaction. Org Lett 12:1512
Fernández JJ, Souto ML, Norte M (2000) Marine polyether triterpenes. Nat Prod Rep 17:235
Norte M, Fernández JJ, Ruano JZ, Matías L, Rodríguez ML, Pérez R (1988) Graciosin and graciosallene, two bromoethers fromLaurencia obtusa. Phytochemistry 27:3537
Norte M, Fernández JJ, Runao JZ (1989) Three new bromo ethers from the red algaLaurencia obtusa. Tetrahedron 45:5987
Kamada T, Vairappan CS (2012) A new bromoallene-producing chemical type of the red algaLaurencia nangii Masuda. Molecules 17:2119
Suzuki T, Koizumi K, Suzuki M, Kurosawa E (1983) Kumausynes and deacetylkumausynes, four new halogenated C-15 acetylenes from the red algaLaurencia nipponica Yamada. Chem Lett 12:1643
Martin T, Soler MA, Betancort JM, Martin VS (1997) Biomimetic-type synthesis of halogenated tetrahydrofurans fromLaurencia. Total synthesis of (+)-trans-deacetylkumausyne. J Org Chem 62:1570
Brown MJ, Harisson T, Overman LE (1991) General approach to halogenated tetrahydrofuran natural products from the red algae of the genusLaurencia. Synthesis of (±)-trans-kumausyne and demonstration of an asymmetric synthesis strategy. J Am Chem Soc 113:5378
Osumi K, Sugimura H (1995) Total synthesis of (–)-trans-kumausyne. Tetrahedron Lett 36:5789
Andrey O, Glanzmann C, Landais Y, Parra-Rapado L (1997) 1,3-Asymmetric induction in electrophilic addition onto homoallylsilanes. An approach towards the total synthesis of (±)-kumausyne. Tetrahedron 53:2835
Lee E, Yoo SK, Cho YS, Cheon HS, Chong YH (1997) Radical cyclisation of β-alkoxyacrylates: stereoselective synthesis of (–)-trans-kumausyne. Tetrahedron Lett 38:7757
Mereyala HB, Gadikota RR (2000) A general strategy for the formal synthesis of (–)-trans-kumausyne and total synthesis of (5R)-Hagen’s gland lactones from diacetone-d-glucose. Tetrahedron Asymm 11:743
García C, Martín T, Martín VS (2001) β-Hydroxy-γ-lactones as chiral building blocks for the enantioselective synthesis of marine natural products. J Org Chem 66:1420
Gadikota RR, Callam CS, Lowary TL (2001) Total synthesis of (2S,3S,5S,10S)-6,9-epoxynonadec-18-ene-7,10-diol and formal total synthesis of (+)-trans-kumausyne fromd-arabinose. J Org Chem 66:9046
Chandler CL, Phillips AJ (2005) A total synthesis of (±)-trans-kumausyne. Org Lett 7:3493
Gutiérrez-Cepeda A, Daranas AH, Fernández JJ, Norte M, Souto ML (2014) Stereochemical determination of five-membered cyclic ether acetogenins using a spin-spin coupling constant approach and DFT calculations. Mar Drugs 12:4031
Fukuzawa A, Aye M, Takaya Y, Fukui TM, Murai A, Masamune T (1989) Laureoxolane a new bromo ether fromLaurencia nipponica. Tetrahedron Lett 30:3665
Kladi M, Vagias C, Papazarifi P, Brogi S, Tafi A, Roussis V (2009) Tetrahydrofuran acetogenins fromLaurencia glandulifera. J Nat Prod 72:190
Suzuki M, Nakano S, Takahashi Y, Abe T, Masuda M (1999) Bisezakyne-A and -B, halogenated C15 acetogenins from a JapaneseLaurencia species. Phytochemistry 51:657
Fukuzawa A, Kurosawa E, Tobetsu I (1980) Laureepoxide, new bromo ether from the marine red algaLaurencia nipponica Yamada. Tetrahedron Lett 21:1471
Imre S, Aydoǧmuş Z, Güner H, Lotter H, Wagner H (1995) Polybrominated non-terpenoid C15 compounds fromLaurencia paniculata andLaurencia obtusa. Z Naturforsch 50C:743
Ji N-Y, Li X-M, Li K, Wang B-G (2007) Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C15 acetogenins from the marine red algaLaurencia decumbens. J Nat Prod 70:1499
Ji NY, Li XM, Li K, Wang BG (2010) Erratum to “Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C15 acetogenins from the marine red algaLaurencia decumbens”. J Nat Prod 73:1192
Dyson BS, Burton JW, Sohn TI, Kim B, Bae H, Kim D (2012) Total synthesis and structure confirmation of elatenyne: success of computational methods for NMR prediction with highly flexible diastereomers. J Am Chem Soc 134:11781
Kim K, Brennan MR, Erickson KL (1989) Lauroxolanes from the marine algaLaurencia majuscula. Tetrahedron Lett 30:1757
Sheldrake HM, Jamieson C, Burton JW (2006) The changing faces of halogenated marine natural products: total synthesis of the reported structures of elatenyne and an enyne fromLaurencia majuscula. Angew Chem Int Ed 45:7199
Sheldrake HM, Jamieson C, Pascu SI, Burton JW (2009) Synthesis of the originally proposed structures of elatenyne and an enyne fromLaurencia majuscula. Org Biomol Chem 7:238
Smith SG, Paton RS, Burton JW, Goodman JM (2008) Stereostructure assignment of flexible five-membered rings by GIAO13C NMR calculations: prediction of the stereochemistry of elatenyne. J Org Chem 73:4053
Brkljaca R, Urban S (2013) Relative configuration of the marine natural product elatenyne using NMR spectroscopic and chemical derivatization methodologies. Nat Prod Commun 8:729
Abdel-Mageed WM, Ebel R, Valeriote FA, Jaspars M (2010) Laurefurenynes A-F, new cyclic ether acetogenins from a marine red algaLaurencia sp. Tetrahedron 66:2855
Shepherd DJ, Broadwith PA, Dyson BS, Paton RS, Burton JW (2013) Structure reassignment of laurefurenynes A and B by computation and total synthesis. Chem Eur J 19:12644
Holmes MT, Britton R (2013) Total synthesis and structural revision of laurefurenynes A and B. Chem Eur J 19:12649
Suzuki T, Koizumi K, Suzuki M, Kurosawa E (1983) Kumausallene, a new bromoallene from the marine red algaLaurencia nipponica Yamada. Chem Lett 12:1639
Grese TA, Hutchinson KD, Overman LE (1993) General approach to halogenated tetrahydrofuran natural products from red algae of genusLaurencia. Total synthesis of (±)-kumausallene and (±)-1-epi-kumausallene. J Org Chem 58:2468
Lee E, Yoo SK, Choo H, Song HY (1998) Radical cyclization of β-alkoxyacrylates: a formal synthesis of (–)-kumausallene. Tetrahedron Lett 39:317
Evans PA, Murthy VS, Roseman JD, Rheingold AL (1999) Enantioselective total synthesis of the nonisoprenoid sesquiterpene (–)-kumausallene. Angew Chem Int Ed 38:3175
Werness JB, Tang W (2011) Stereoselective total synthesis of (–)-kumausallene. Org Lett 13:3664
Nesbitt CL, McErlean CSP (2009) An expedient synthesis of 2,5-disubstituted-3-oxygenated tetrahydrofurans. Tetrahedron Lett 50:6318
Okamoto Y, Nitanda N, Ojika M, Sakagami Y (2003) Aplysiallene, a new bromoallene as an Na+,K+-ATPase inhibitor from the sea hareAplysia kurodai (Erratum). Biosci Biotechnol Biochem 67:460
Wang J, Pagenkopf BL (2007) First total synthesis and structural reassignment of (–)-aplysiallene. Org Lett 9:3703
Suzuki M, Kurosawa E (1981) Okamurallene, a novel halogenated C15 metabolite from the red algaLaurencia okamurai Yamada. Tetrahedron Lett 22:3853
Suzuki M, Sasage Y, Ikura M, Hikichi K, Kurosawa E (1989) Structure revision of okamurallene and structure elucidation of further C15 non-terpenoid bromoallenes fromLaurencia intricata. Phytochemistry 28:2145
Suzuki M, Kondo H, Tanaka I (1991) The absolute stereochemistry of okamurallene and its congeners, halogenated C15 nonterpenoids from the red algaLaurencia intricata. Chem Lett 20:33
Suzuki M, Kurosawa E (1982) Deoxyokamurallene and isookamurallene, new halogenated nonterpenoid C15-compounds from the red algaLaurencia okamurai Yamada. Chem Lett 11:289
Kinnel R, Duggan AJ, Eisner T, Meinwald J, Miura I (1977) Panacene, an aromatic bromoallene from a sea hare (Aplysia brasiliana). Tetrahedron Lett 18:3913
Feldman KS (1982) Biomimetic synthesis of (±)-panacene. Tetrahedron Lett 23:3031
Feldman KS, Mechem CC, Nader L (1982) Total synthesis of (±)-panacene. J Am Chem Soc 104:4011
Sabot C, Bérard D, Canesi S (2008) Expeditious total syntheses of natural allenic products via aromatic ring umpolung. Org Lett 10:4629
Howard BM, Fenical W, Arnold EV, Clardy J (1979) Obtusin, a unique bromine-containing polycyclic ketal from the red marine algaLaurencia obtusa. Tetrahedron Lett 20:2841
Caccamese S, Toscano RM (1986) Neoobtusin, a new brominated ketal from the marine red algaLaurencia obtusa. Gazz Chim Ital 116:177
Sugimura H, Hasegawa Y, Osumi K (2000) Studies relating to the synthesis of laurenenynes: construction of the alkylidene side chain via [2,3]-Wittig-Still rearrangement at the anomeric center of a furanoside derivative. Heterocycles 52:99
Liu X, Li XM, Li CS, Ji NY, Wang BG (2010) Laurenidificin, a new brominated C15 acetogenin from the marine red algaLaurencia nidifica. Chin Chem Lett 21:1213
Schulte GR, Chung MCH, Scheuer PJ (1981) Two bicyclic C15 enynes from the sea hareAplysia oculifera. J Org Chem 46:3870
Waraszkiewicz SM, Sun HH, Erickson KL (1976) C15-halogenated compounds from the Hawaiian marine algaLaurencia nidifica. V. The maneonenes. Tetrahedron Lett 17:3021
Waraszkiewicz SM, Sun HH, Erickson KL, Finer J, Clardy J (1978) C15 halogenated compounds from the Hawaiian marine algaLaurencia nidifica. Maneonenes and isomaneonenes. J Org Chem 43:3194
Ayyad SEN, Al-Footy KO, Alarif WM, Sobahi TR, Bassaif SA, Makki MS, Asiri AM, Al Halwani AY, Badria AF, Badria FA (2011) Bioactive C15 acetogenins from the red algaLaurencia obtusa. Chem Pharm Bull 59:1294
Holmes AB, Jennings-White CLD, Kendrick DA (1983) Total synthesis ofcis-maneonenes-A and B. J Chem Soc Chem Commun:415
Sun HH, Waraszkiewicz SM, Erickson KL (1976) C15-halogenated compounds from the Hawaiian marine algaLaurencia nidifica. VI. The isomaneonenes. Tetrahedron Lett 17:4227
Holmes AB, Jennings-White CLD, Kendrick DA (1984) Total synthesis of (±)-trans-maneonene-B. J Chem Soc Chem Commun:1594
Vanderah DJ, Schmitz FJ (1976) Marine natural products; Isodactylyne, a halogenated acetylenic ether from the sea hareAplysia dactylomela. J Org Chem 41:3480
Gao L, Murai A (1992) Total synthesis of (–)-dactylyne and (–)-isodactylyne. Tetrahedron Lett 33:4349
Gao L, Murai A (1996) Total synthesis of (–)-dactylynes. Heterocycles 42:745
McDonald FJ, Campbell DC, Vanderah DJ, Schmitz FJ, Washecheck DM, Burks JE, Van Der Helm D (1975) Marine natural products. Dactylyne an acetylenic dibromochloro ether from the sea hareAplysia dactylomela. J Org Chem 40:665
Lee H, Kim KW, Park J, Kim H, Kim S, Kim D, Hu X, Yang W, Hong J (2008) A general strategy for construction of both 2,6-cis and 2,6-trans-disubstituted tetrahydropyrans: substrate-controlled asymmetric total synthesis of (+)-scanlonenyne. Angew Chem Int Ed 47:4200
de Silva ED, Schwartz RE, Scheuer PJ, Shoolery JN (1983) Srilankenyne, a new metabolite from the sea hareAplysia oculifera. J Org Chem 48:395
Takahashi Y, Suzuki M, Abe T, Masuda M (1999) Japonenynes, halogenated C15 acetogenins fromLaurencia japonensis. Phytochemistry 50:799
Imre S, Öztunç A, Islimyeli S (1987) Chemical investigation of some marine organisms from Turkish waters. Turk Kim Derg 11:119
Kozikowski AP, Lee J (1990) A synthesis approach to thecis-fused marine pyranopyrans (3E)- and (3Z)-dactomelyne. X-ray structure of a rare organomercurial. J Org Chem 55:863
Lee E, Park CM, Yun JS (1995) Total synthesis of dactomelynes. J Am Chem Soc 117:8017
Lee E (1996) Oxacycle synthesis via radical cyclization of β-alkoxyacrylates. Pure Appl Chem 68:631
Fukuzawa A, Masamune T (1981) Laurepinnacin and isolaurepinnacin, new acetylenic cyclic ethers from the marine red algaLaurencia pinnata Yamada. Tetrahedron Lett 22:4081
Kotsuki H, Ushio Y, Kadota I, Ochi M (1989) Stereoselective reduction of bicyclic ketals. A new, enantioselective synthesis of isolaurepinnacin and lauthisan skeletons. J Org Chem 54:5153
Berger D, Overman LE, Renhowe PA (1993) Enantioselective total synthesis of (+)-isolaurepinnacin. J Am Chem Soc 115:9305
Berger D, Overman LE, Renhowe PA (1997) Total synthesis of (+)-isolaurepinnacin. Use of acetal-alkene cyclizations to prepare highly functionalized seven-membered cyclic ethers. J Am Chem Soc 119:2446
Suzuki T, Matsumura R, Nagai Y, Sato K, Sekiguchi H, Hagiwara H, Ando M (1997) Stereospecific construction of medium-sized cyclic ethers and its applications to synthesis of marine natural products. Symp Chem Nat Prod 39:91
Suzuki T, Matsumura R, Oku KI, Taguchi K, Hagiwara H, Hoshi T, Ando M (2001) Formal synthesis of (+)-isolaurepinnacin. Tetrahedron Lett 42:65
Rodríguez-López J, Ortega N, Martín VS, Martín T (2014) β-Hydroxy-γ-lactones as nucleophiles in the Nicholas reaction for the synthesis of oxepene rings. Enantioselective formal synthesis of (−)-isolaurepinnacin and (+)-rogioloxepane A. Chem Commun 50:3685
Guella G, Mancini I, Chiasera G, Pietra F (1992) On the unusual propensity by the red seaweedLaurencia microcladia of Il Rogiolo to form C15 oxepanes: isolation of rogioloxepane A, B, C, and their likely biogenetic acyclic precursor, prerogioloxepane. Helv Chim Acta 75:310
Matsumura R, Suzuki T, Hagiwara H, Hoshi T, Ando M (2001) The first total synthesis of (+)-rogioloxepane A. Tetrahedron Lett 42:1543
Crimmins MT, DeBaillie AC (2003) Enantioselective total synthesis of (+)-rogioloxepane A. Org Lett 5:3009
Lyakhova EG, Kalinovsky AI, Dmitrenok AS, Kolesnikova SA, Fedorov SN, Vaskovsky VE, Stonik VA (2006) Structures and absolute stereochemistry of nipponallene and neonipponallene, new brominated allenes from the red algaLaurencia nipponica. Tetrahedron Lett 47:6549
Guella G, Mancici I, Chiasera G, Pietra F (1992) Rogiolenyne D, the likely immediate precursor of rogiolenyne A and B, branched C15 acetogenins isolated from the red seaweedLaurencia microcladia of Il Rogiolo. Conformation and absolute configuration in the whole series. Helv Chim Acta 75:303
Guella G, Pietra F (1991) Rogiolenyne A, B and C: the first branched marine C15 acetogenins. Isolation from the red seaweedLaurencia microcladia or the spongeSpongia zimocca of Il Rogiolo. Helv Chim Acta 74:47
Kurosawa E, Fukuzawa A, Irie T (1973) Isoprelaurefucin, new bromo compound fromLaurencia nipponica Yamada. Tetrahedron Lett 14:4135
Suzuki M, Kurata K, Suzuki T, Kurosawa E (1986) The absolute configuration of isoprelaurefucin. Bull Chem Soc Jpn 59:2953
Lee H, Kim Y, Yoon T, Kim B, Kim S, Kim H-D, Kim D (2005) Novel “protecting group-dependent” alkylation-RCM strategy to medium-sized oxacycles: first total synthesis of (-)-isoprelaurefucin. J Org Chem 70:8723
Suzuki M, Mizuno Y, Matsuo Y, Masuda M (1996) Neoisoprelaurefucin, a halogenated C15 non-terpenoid compound fromLaurencia nipponica. Phytochemistry 43:121
Lee H, Kim H, Baek S, Kim S, Kim D (2003) Total synthesis and determination of the absolute configuration of (+)-neoisoprelaurefucin. Tetrahedron Lett 44:6609
Falshaw CP, King TJ, Imre S, Islimyeli S, Thomson RH (1980) Laurenyne, a new acetylene fromLaurencia obtusa, crystal structure and absolute configuration. Tetrahedron Lett 21:4951
Öztunç A, Imre S, Lotter H, Wagner H (1991) Two C15 bromoallenes from the red algaLaurencia obtusa. Phytochemistry 30:255
Overman LE, Thompson AS (1988) Total synthesis of (–)-laurenyne. Use of acetyl-initiated cyclizations to prepare functionalized eight-membered cyclic ethers. J Am Chem Soc 110:2248
Boeckman RK, Zhang J, Reeder MR (2002) Synthetic and mechanistic studies of the retro-Claisen rearrangement 4. An application to the total synthesis of (+)-laurenyne. Org Lett 4:3891
Clark JS, Freeman RP, Cacho M, Thomas AW, Swallow S, Wilson C (2004) Stereoselective synthesis of the cyclic ether core of (+)-laurenyne. Tetrahedron Lett 45:8639
Suzuki M, Kurosawa E, Furusaki A, Matsumoto T (1983) The structures of (3Z)-epoxyvenustin, (3Z)-venustin, and (3Z)-venustinene, new halogenated C15-nonterpenoids from the red algaLaurencia venusta Yamada. Chem Lett 12:779
Howard BM, Fenical W, Hirotsu K, Solheim B, Clardy J (1980) The rhodophytin and chondriol natural products, structures of several new acetylenes fromLaurencia and a reassignment of structure ofcis-rhodophytin. Tetrahedron 36:171
Fenical W (1974) Rhodophytin, a halogenated vinyl peroxide of marine origin. J Am Chem Soc 96:5580
Fenical W, Sims JJ, Radlick P (1973) Chondriol, a halogenated acetylene from the marine algaChondria oppositiclada. Tetrahedron Lett 14:313
Fenical W, Gifkins KB, Clardy J (1974) X-ray determination of chondriol, a re-assignment of structure. Tetrahedron Lett 15:1507
Suzuki M, Kurosawa E (1980) Venustin A and B, new halogenated C15 metabolites from the red algaLaurencia venusta Yamada. Chem Lett 9:1177
Norte M, González AG, Cataldo F, Rodríguez ML, Brito I (1991) New examples of acyclic and cyclic C-15 acetogenins fromLaurencia pinnatifida. Reassignment of the absolute configuration forE andZ pinnatifidienyne. Tetrahedron 47:9411
Notre M, Fernández JJ, Cataldo F, González AG (1989)E-Dihydrorhodophytin, a C15 acetogenin from the red algaLaurencia pinnatifida. Phytochemistry 28:647
Vairappan CS, Lee TK (2009) C-15 halogenated acetogenin with antibacterial activity against food pathogens. Malay J Sci 28:263
Kinnel RB, Dieter RK, Meinwald J, Van Engen D, Clardy J, Eisner T, Stallard MO, Fenical W (1979) Brasilenyne andcis-dihydrorhodophytin, antifeedant medium-ring haloethers from a sea hare (Aplysia brasiliana). Proc Natl Acad Sci USA 76:3576
Fukuzawa A, Takasugi Y, Murai A (1991) Prelaureatin, a new biogenetic key intermediate isolated fromLaurencia nipponica. Tetrahedron Lett 32:5597
Fukuzawa A, Aye M, Murai A (1990) A direct enzymatic synthesis of laurencin from laurediol. Chem Lett 19:1579
Fukuzawa A, Takasugi Y, Murai A, Nakamura M, Tamura M (1992) Enzymatic single-step formation of laureatin and its key intermediate, prelaureatin, from (3Z,6S,7S)-laurediol. Tetrahedron Lett 33:2017
Fukuzawa A, Aye M, Takasugi Y, Nakamura M, Tamura M, Murai A (1994) Enzymic bromo-ether cyclization of laurediols with bromoperoxidase. Chem Lett 13:2307
Ishihara J, Kanoh N, Murai A (1995) Enzymatic reaction of (3E,6S,7S)-laurediol and the molecular modeling studies on the cyclization of laurediols. Tetrahedron Lett 36:737
Crimmins MT, Tabet EA (2000) Total synthesis of (+)-prelaureatin and (+)-laurallene. J Am Chem Soc 122:5473
Fujiwara K, Souma SI, Mishima H, Murai A (2002) Total synthesis of prelaureatin. Synlett 13:1493
Sasaki M, Oyamada K, Takeda K (2010) Formal total syntheses of (+)-prelaureatin and (+)-laurallene by diastereoselective Brook rearrangement-mediated [3+4] annulation. J Org Chem 75:3941
Li J, Suh JM, Chin E (2010) Expedient enantioselective synthesis of the Δ4-oxocene cores of (+)-laurencin and (+)-prelaureatin. Org Lett 12:4712
Iliopoulou D, Vagias C, Harvala C, Roussis V (2002) C15 acetogenins from the red algaLaurencia obtusa. Phytochemistry 59:111
González AG, Martín JD, Martín VS, Norte M, Pérez R, Ruano JZ, Drexler SA, Clardy J (1982) Non-terpenoid C-15 metabolites from the red seaweedLaurencia pinnatifida. Tetrahedron 38:1009
Kim H, Choi WJ, Jung J, Kim S, Kim D (2003) Construction of eight-membered ether rings by olefin geometry-dependent internal alkylation: first asymmetric total syntheses of (+)-3-(E)- and (+)-3-(Z)-pinnatifidenyne. J Am Chem Soc 125:10238
Snyder SA, Brucks AP, Treitler DS, Moga I (2012) Concise synthetic approaches for theLaurencia family: formal total syntheses of (±)- laurefucin and (±)-E- and (±)-Z-pinnatifidenyne. J Am Chem Soc 134:17714
Imre S, Lotter H, Wagner H, Thomson RH (1987) Epoxy-trans-isodihydrorhodophytin, a new metabolite fromLaurencia obtusa. Z Naturforsch 42C:507
Caccamese S, Azzolina R, Duesler EN, Paul IC, Rinehart KL (1980) Laurencienyne; a new acetylenic cyclic ether from the marine red algaLaurencia obtusa. Tetrahedron Lett 21:2299
Rinehart KL Jr, Shaw PD, Shield LS, Gloer JB, Harbour GC, Koker MES, Samain D, Schwartz RE, Tymiak AA, Weller DL, Carter GT, Munro MHG, Hughes RG Jr, Renis HE, Swynenberg EB, Stringfellow DA, Vavra JJ, Coats JH, Zurenko GE, Kuentzel SL, Li LH, Bakus GJ, Brusca RC, Craft LL, Young DN, Connor JL (1981) Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. Pure Appl Chem 53:795
Aydoğmuş Z, Imre S (1999) A new halogenated C15 non-terpenoid compound from the marine red algaLaurencia obtusa. Acta Pharm Turc 41:93
Ojika M, Nemoto T, Yamada K (1993) Doliculols A and B, the non-halogenated C15 acetogenins with cylic ether from the sea hareDolabella auricularia. Tetrahedron Lett 34:3461
Gutiérrez-Cepeda A, Fernández JJ, Gil LV, López-Rodríguez M, Norte M, Souto ML (2011) Nonterpenoid C15 acetogenins fromLaurencia marilzae. J Nat Prod 74:441
Irie T, Suzuki M, Masamune T (1965) Laurencin, a constituent fromLaurencia species. Tetrahedron Lett 6:1091
Irie T, Suzuki M, Masamune T (1968) Laurencin, a constituent ofLaurencia glandulifera Kützing. Tetrahedron 24:4193
Forbes Cameron A, Cheung KK, Ferguson G, Monteath Robertson J (1969)Laurencia natural products: crystal structure and absolute stereochemistry of laurencin. J Chem Soc B:559
Robinson RA, Clark JS, Holmes AB (1993) Synthesis of (+)-laurencin. J Am Chem Soc 115:10400
Bratz M, Bullock WH, Overman LE, Takemoto T (1995) Total synthesis of (+)-laurencin. Use of acetal-vinyl sulfide cyclizations for forming highly functionalized eight-membered cyclic ethers. J Am Chem Soc 117:5958
Burton JW, Clark JS, Derrer S, Stork TC, Bendall JG, Holmes AB (1997) Synthesis of medium ring ethers. 5. The synthesis of (+)-laurencin. J Am Chem Soc 119:7483
Crimmins MT, Choy AL (1999) An asymmetric aldol-ring-closing metathesis strategy for the enantioselective synthesis of (+)-laurencin. J Am Chem Soc 121:5653
Crimmins MT, Emmitte KA (1999) Total synthesis of (+)-laurencin: an asymmetric alkylation-ring-closing metathesis approach to medium ring ethers. Org Lett 1:2029
Baek S, Jo H, Kim H, Kim H, Kim S, Kim D (2005) Highly stereoselective and efficient total synthesis of (+)-laurencin. Org Lett 7:75
Fujiwara K, Yoshimoto S, Takizawa A, Souma S, Mishima H, Murai A, Kawai H, Suzuki T (2005) Synthesis of (+)-laurencin via ring expansion of a C-glycoside derivative. Tetrahedron Lett 46:6819
Adsool VA, Pansare SV (2008) An enantioselective approach to (+)-laurencin. Org Biomol Chem 6:2011
Ortega N, Martin VS, Martin T (2010) An approach to lauroxanes by literative use of Co2(CO)6-acetylenic complexes. A formal synthesis of (+)-laurencin. J Org Chem 75:6660
White RH, Hager LP (1978) Intricenyne and related halogenated compounds fromLaurencia intricata. Phytochemistry 17:939
Blunt JW, Lake RJ, Munro MHG (1984) Metabolites of the marine red algaLaurencia thyrsifera. III. Aust J Chem 37:1545
Cardellina JH II, Horsley SB, Clardy J, Leftow SR, Meinwald J (1982) Secondary metabolites from the red algaLaurencia intricata: halogenated enynes. Can J Chem 60:2675
Kim G, Sohn TI, Kim D, Paton R (2014) Asymmetric total synthesis of (+)-bermudenynol, a C15Laurencia metabolite with a vinyl chloride containing oxocene skeleton, through intramolecular amide enolate alkylation. Angew Chem Int Ed 53:272
Kladi M, Vagias C, Stavri M, Rahman MM, Gibbons S, Roussis V (2008) C15 acetogenins with antistaphylococcal activity from the red algaLaurencia glandulifera. Phytochem Lett 1:31
Blunt JW, Lake RJ, Munro MHG, Yorke SC (1981) A new vinyl acetylene from the red algaLaurencia thyrsifera. Aust J Chem 34:2393
Howard BM, Schulte GR, Fenical W, Solheim B, Clardy J (1980) Three new vinyl acetylenes from the marine red algaLaurencia. Tetrahedron 36:1747
Fukuzawa A, Kurosawa E, Tobetsu I (1979) Laurallene, new bromoallene from the marine red algaLaurencia nipponica Yamada. Tetrahedron Lett 20:2797
Ishihara J, Shimada Y, Kanoh N, Takasugi Y, Fukuzawa A, Murai A (1997) Conversion of prelaureatin into laurallene, a bromo-allene compound, by enzymatic and chemical bromo-etherification reactions. Tetrahedron 53:8371
Saitoh T, Suzuki T, Sugimoto M, Hagiwara H, Hoshi T (2003) Total synthesis of (+)-laurallene. Tetrahedron Lett 44:3175
Kim MJ, Sohn TI, Kim D, Paton RS (2012) Concise substrate-controlled asymmetric total syntheses of dioxabicyclic marine natural products with 2,10-dioxabicyclo-[7.3.0]dodecene and 2,9-dioxabicyclo[6.3.0]undecene skeletons. J Am Chem Soc 134:20178
Suzuki M, Takahashi Y, Matsuo Y, Masuda M (1996) Pannosallene, a brominated C15 nonterpenoid fromLaurencia pannosa. Phytochemistry 41:1101
Suzuki M, Kurosawa E (1987) (3E)-Laureatin and (3E)-isolaureatin, halogenated C-15 non-terpenoid compounds from the red algaLaurencia nipponica Yamada. Bull Chem Soc Jpn 60:3791
Yoshimitsu Y, Inuki S, Oishi S, Fujii N, Ohno H (2013) Palladium-catalyzed medium-ring formation for construction of the core structure ofLaurencia oxacycles: synthetic study of laurendecumallene B. Org Lett 15:3046
Kurosawa E, Fukuzawa A, Irie T (1973)trans- andcis-Laurediol, unsaturated glycols fromLaurencia nipponica Yamada. Tetrahedron Lett 14:2121
Irie T, Izawa M, Kurosawa E (1968) Laureatin, a constituent fromLaurencia nipponica Yamada. Tetrahedron Lett 9:2091
Irie T, Izawa M, Kurosawa E (1970) Laureatin and isolaureatin, constituents ofLaurencia nipponica Yamada. Tetrahedron 26:851
Kurosawa E, Furusaki A, Izawa M, Fukuzawa A, Irie T (1973) The absolute configurations of laureatin and isolaureatin. Tetrahedron Lett 14:3857
Sugimoto M, Suzuki T, Hagiwara H, Hoshi T (2007) The first total synthesis of (+)-(Z)-laureatin. Tetrahedron Lett 48:1109
Kim H, Lee H, Lee D, Kim S, Kim D (2007) Asymmetric total syntheses of (+)-(3Z)-laureatin and (+)-(3Z)-isolaureatin by “lone pair-lone pair interaction-controlled” isomerization. J Am Chem Soc 129:2269
Keshipeddy S, Martínez I, Castillo BF, Morton MD, Howell AR (2012) Toward a formal synthesis of laureatin: unexpected rearrangements involving cyclic ether nucleophiles. J Org Chem 77:7883
Irie T, Izawa M, Kurosawa E (1968) Isolaureatin, a constituent fromLaurencia nipponica Yamada. Tetrahedron Lett 9:2735
Fukuzawa A, Kurosawa E, Irie T (1972) Laurefucin and acetyllaurefucin, new bromo compounds fromLaurencia nipponica Yamada. Tetrahedron Lett 13:3
Furusaki A, Kurosawa E, Fukuzawa A, Irie T (1973) The revised structure and absolute configuration of laurefucin fromLaurencia nipponica Yamada. Tetrahedron Lett 14:4579
McPhail KL, Davies-Coleman MT (2005) (3Z)-Bromofucin from a South African sea hare. Nat Prod Res 19:449
Fukuzawa A, Aye M, Nakamura M, Tamura M, Murai A (1990) Structure elucidation of laureoxanyne, a new nonisoprenoid C15 enyne, using lactoperoxidase. Tetrahedron Lett 31:4895
Kennedy DJ, Selby IA, Cowe HJ, Cox PJ, Thomson RH (1984) Bromoallenes from the algaLaurencia microcladia. J Chem Soc Chem Commun:153
Park JH, Kim BS, Kim HS, Kim SH, Kim DJ (2007) Substrate-controlled asymmetric total synthesis of (+)-microcladallene B with bromination strategy based on a nucleophile-assisting leaving group. Angew Chem Int Ed 46:4726
Denmark SE, Yang S-M (2002) Intramolecular silicon-assisted cross-coupling: total synthesis of (+)-brasilenyne. J Am Chem Soc 124:15196
Denmark SE, Yang SM (2004) Total synthesis of (+)-brasilenyne. Application of an intramolecular silicon-assisted cross-coupling reaction. J Am Chem Soc 126:12432
King TJ, Imre S, Öztunc A, Thomson RH (1979) Obtusenyne, a new acetylenic nine-membered cyclic ether fromLaurencia obtusa. Tetrahedron Lett 20:1453
Curtis NR, Holmes AB, Looney MG (1992) Studies towards the synthesis of obtusenyne. Synthesis of the hexahydrooxonin nucleus. Tetrahedron Lett 33:671
Curtis NR, Holmes AB, Looney MG (1991) Studies towards the synthesis of obtusenyne. A Claisen rearrangement approach to unsaturated nine-membered lactones. Tetrahedron 47:7171
Fujiwara K, Awakura D, Tsunashima M, Nakamura A, Honma T, Murai A (1999) Total synthesis of (+)-obtusenyne. J Org Chem 64:2616
Crimmins MT, Powell MT (2003) Enantioselective total synthesis of (+)-obtusenyne. J Am Chem Soc 125:7592
Urmura T, Suzuki T, Onodera N, Hagiwara H, Hoshi T (2007) Total synthesis of (+)-obtusenyne. Tetrahedron Lett 48:715
Frankie Mak SY, Curtis NR, Payne AN, Congreve MS, Wildsmith AJ, Francis CL, Davies JE, Pascu SI, Burton JW, Holmes AB (2008) Synthesis of (+)-obtusenyne. Chem Eur J 14:2867
Awakura D, Fujiwara K, Murai A (1999) Determination of the absolute configuration of Norte’s obtusenynes by total synthesis of (12R,13R)-(–)- and (12S,13R)-(+)-obtusenynes. Chem Lett 28:461
Kurata K, Furusaki A, Suehiro K, Katayama C, Suzuki T (1982) Isolaurallene, a new nonterpenoid C15-bromoallene, from the red algaLaurencia nipponica Yamada. Chem Lett 11:1031
Furusaki A, Katsuragi S-I, Suehiro K, Matsumoto T (1985) The conformations of (Z)-2,3,4,7,8,9-hexahydrooxonin and (Z)-cyclononene. X-ray structure determinations of isolaurallene and neolaurallene, and force-field calculations. Bull Chem Soc Jpn 58:803
Crimmins MT, Emmitte KA (2001) Asymmetric total synthesis of (–)-isolaurallene. J Am Chem Soc 123:1533
Crimmins MT, Emmitte KA, Choy AL (2002) Ring closing metathesis for the formation of medium ring ethers: the total synthesis of (–)-isolaurallene. Tetrahedron 58:1817
Suzuki M, Kurosawa E, Furusaki A, Katsuragi S-I, Matsumoto T (1984) Neolaurallene, a new halogenated C-15 nonterpenoid from the red algaLaurencia okamurai Yamada. Chem Lett 13:1033
Jeong W, Kim MJ, Kim H, Kim S, Kim D, Shin KJ (2010) Substrate-controlled asymmetric total synthesis and structure revision of (+)-itomanallene A. Angew Chem Int Ed 49:752
Braddock DC, Bhuva R, Millan DS, Pérez-Fuertes Y, Roberts CA, Sheppard RN, Solanki S, Stokes ESE, White AJP (2007) A biosynthetically-inspired synthesis of the tetrahydrofuran core of obtusallenes II and IV. Org Lett 9:445
Guella G, Chiasera G, Mancini I, Öztunç A, Pietra F (1997) Twelve-memberedO-bridged cyclic ethers of red seaweeds in the genusLaurencia exist in solution as slowly interconverting conformers. Chem Eur J 3:1223
Guella G, Mancini I, Öztunç A, Pietra F (2000) Conformational bias in macrocyclic ethers and observation of high solvolytic reactivity at a masked furfuryl (=2-furylmethyl) C-atom. Helv Chim Acta 83:336
Ciavatta ML, Gavagnin M, Puliti R, Cimino G, Martínez E, Ortea J, Mattia CA (1997) Dactyllalene: a novel dietary C15 bromoallene from the Atlantic anaspidean molluscAplysia dactylomela. Tetrahedron 53:17343
Braddock DC, Millan DS, Pérez-Fuertes Y, Pouwer RH, Sheppard RN, Solanki S, White AJP (2009) Bromonium ion induced transannular oxonium ion formation-fragmentation in model obtusallene systems and structural reassignment of obtusallenes V-VII. J Org Chem 74:1835
Öztunç A, Imre S, Wagner H, Norte M, Fernández JJ, González R (1991) A new and highly oxygenated bromoallene from a marine source. Tetrahedron Lett 32:4377
Cox PJ, Imre S, Islimyeli S, Thomson RH (1982) Obtusallene I, a new halogenated allene fromLaurencia obtusa. Tetrahedron Lett 23:579
Cox PJ, Howie RA (1982) X-ray structure analysis of obtusallene. Acta Crystallogr B38:1386
Öztunç A, Imre S, Wagner H, Norte M, Fernández JJ, González R (1991) A new haloether fromLaurencia possessing a lauroxacyclododecane ring. Structural and conformational studies. Tetrahedron 47:2273
Gutiérrez-Cepeda G, Fernández JJ, Norte M, Souto ML (2011) New bicyclotridecane C15 nonterpenoid bromoallenes fromLaurencia marilzae. Org Lett 13:2690
Wright AE, Wing RM, Sims JJ (1983) Poitediene a new metabolite from the marine red algaLaurencia poitei. Tetrahedron Lett 24:4649
Kigoshi H, Shizuri Y, Niwa H, Yamada K (1982) Isolation and structures oftrans-laurencenyne, a possible precursor of the C15 halogenated cyclic ethers, andtrans-neolaurencenyne fromLaurencia okamurai. Tetrahedron Lett 23:1475
Kigoshi H, Shizuri Y, Niwa H, Yamada K (1986) Four new C15 acetylenic polyenes of biogenetic significance from the red algaLaurencia okamurai: structures and synthesis. Tetrahedron 42:3781
Holmeide AK, Skattebol I, Sydnes M (2001) The syntheses of three highly unsaturated marine lipid hydrocarbons. J Chem Soc Perkin Trans 1:1942
Fukuzawa A, Honma T, Takasugi Y, Murai A (1993) Biogenetic intermediates, (3E and 3Z,12Z)-laurediols and (3E and 3Z)-12,13-dihydrolaurediols, isolated fromLaurencia nipponica. Phytochemistry 32:1435
Palazón JM, Martín VS (1988) Enantioselective total synthesis of 6(R),7(R)-3-cis-9-cis-12-cis, 6-acetoxy-7-chloropentadeca-3,9,12-trien-1-yne and its 3-trans-isomer. Tetrahedron Lett 29:681
Fukuzawa A, Sato H, Miyamoto M, Masamune T (1986) Synthesis of (6S,7S)-trans-laurediol and its [9,10-2H2]-analogue. Tetrahedron Lett 27:2901
Añorbe B, Martín VS, Palazón JM, Trujillo JM (1986) Enantiomeric syntheses of 6R,7R and 6S,7S trans- andcis-laurediol. Tetrahedron Lett 27:4991
Martin T, Martin VS (2000) A short synthesis oftrans-(+)-laurediol. Tetrahedron Lett 41:2503
Gadikota RR, Keller AI, Callam CS, Lowary TL (2003) Efficient syntheses oftrans-(+)-laurediol from carbohydrate precursors. Tetrahedron Asymm 14:737
Ishihara J, Kanoh N, Fukuzawa A, Murai A (1994) Isomerization of the (Z)-enyne unit to the (E)-enyne unit. Conversion of laureatin to (E)-isolaureatin. Chem Lett 13:1563
Braddock DC (2006) A hypothesis concerning the biosynthesis of the obtusallene family of marine natural products via electrophilic bromination. Org Lett 8:6055
Braddock DC, Rzepa HS (2008) Structural reassignment of obtusallenes V, VI and VII by GIAO-based density functional prediction. J Nat Prod 71:728
Su H, Yuan ZH, Li J, Guo SJ, Deng LP, Han LJ, Zhu XB, Shi DY (2009) Two new bromoindoles from red algaLaurencia similis. Chin Chem Lett 20:456
Sun WS, Su S, Zhu RX, Tu GZ, Cheng W, Liang H, Guo XY, Zhao YY, Zhang QY (2013) A pair of unprecedentedspiro-trisindole enantiomers fused through a five-member ring fromLaurencia similis. Tetrahedron Lett 54:3617
Carter GT, Rinehart KL, Li LH, Kuentzel S, Connor JL (1978) Brominated indoles fromLaurencia brongniartii. Tetrahedron Lett 19:4479
Su H, Yuan Z, Li J, Guo S, Han L, Zhu X, Shi D (2009) Studies on chemical constituents ofLaurencia saitoi. Chin J Chin Mat Med 34:871
Masuda M, Kawaguchi S, Takahashi Y, Okamoto K, Suzuki M (1999) Halogenated secondary metabolites ofLaurencia similis (Rhodomelaceae, Rhodophyta). Bot Mar 42:199
Vairappan CS, Yen AM, Yi OC, Moi PS (2004) Biologically active polybrominated indoles in the red algaLaurencia similis from the coastal waters of Sabah (Rhodomelaceae, Ceramiales). Malay J Sci 23:119
Suárez-Castillo OR, Beiza-Granados L, Meléndez-Rodríguez M, Alvarez-Hernández A, Morales-Ríos MS, Joseph-Nathan P (2006) Synthesis of bromoindole alkaloids fromLaurencia brogniartii. J Nat Prod 69:1596
Tanaka J, Higa T, Benardinelli G, Jefford CW (1989) Sulfur-containing polybromoindoles from the red algaLaurencia brongniartii. Tetrahedron 45:7301
El-Gamal AA, Wang WL, Duh CY (2005) Sulfur-containing polybromoindoles from the Formosan red algaLaurencia brongniartii. J Nat Prod 68:815
Tanaka J, Higa T, Bernardinelli G, Jefford CW (1988) Itomanindoles A and B, methylsulfinylindoles fromLaurencia brongniartii. Tetrahedron Lett 29:6091
Fang HY, Chiou SF, Uvarani C, Wen ZH, Hsu CH, Wu YC, Wang WL, Liaw CC, Sheu JH (2014) Cytotoxic, anti-inflammatory and antibacterial sulfur-containing polybromoindoles from the Formosan red algaLaurencia brongniartii. Bull Chem Soc Jpn 87:1278
Liu Y, Gribble GW (2002) Syntheses of polybrominated indoles from the red algaLaurencia brongniartii and the brittle starOphiocoma erinaceus. J Nat Prod 65:748
Kubota NK, Iwamoto H, Fukazawa Y, Uchio Y (2005) Five new sulfur-containing polybrominated bisindoles from the red algaLaurencia brongniartii. Heterocycles 65:2675
Wright AD, König GM, Angerhofer CK, Greenidge P, Linden A, Desqueyroux-Faúndez R (1996) Antimalarial activity: the search for marine-derived natural products with selective antimalarial activity. J Nat Prod 59:710
Mikami D, Kurihara H, Kim SM, Takahashi K (2013) Red algal bromophenols as glucose 6-phosphate dehydrogenase inhibitors. Mar Drugs 11:4050
Valdebenito H, Bittner M, Sammes PG, Silva M, Watson WH (1982) A compound with antimicrobial activity isolated from the red seaweedLaurencia chilensis. Phytochemistry 21:1456
Qin JC, Su H, Zhang YM, Gao JM, Zhu L, Wu XA, Pan HY, Li XA (2010) Highly brominated metabolites from marine red algaLaurencia similis inhibit protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 20:7152
Zhong Y, Su J, Zeng L, Yan S, Luo B (1996) Studies on the chemical constituents ofLaurencia karlae collected from the South China Sea. Chem J Chin Univ 17:249
Su JY, Xu XH, Zeng LM, Wang CJ (1997) A new iodolactone fromLaurencia majuscula. Chem J Chin Univ 18:1333
Kavita K, Singh VK, Jha B (2014) 24-Branched Δ5 sterols fromLaurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiol Res 169:301
Al-Iihaibi SS, Ayyad SEN, Al-Wessaby E, Alarif WM (2010) 3β,7β-Dihydroxy-5α-cholestane skeleton fromLaurencia papillosa. Biochem Syst Ecol 38:861
Alarif WM, Al-Lihaibi SS, Abdel-Lateff A, Ayyad SEN (2011) New antifungal cholestane and aldehyde derivatives from the red algaLaurencia papillosa. Nat Prod Commun 6:1821
Xu XH, Su JY (1997) A new cytotoxic dihydroxysterol fromLaurencia majuscula. Chin Chem Lett 8:235
Fukuzawa A, Kumagai Y, Masamune T, Furusaki A, Katayama C, Matsumoto T (1981) Acetylpinnasterol and pinnasterol, ecdysone-like metabolites from the marine red algaLaurencia pinnata Yamada. Tetrahedron Lett 22:4085
Fukuzawa A, Miyamoto M, Kumagai Y, Masamune T (1986) Ecdysone-like metabolites, 14α-hydroxypinnasterols from the red algaLaurencia pinnata. Phytochemistry 25:1305
Kobayashi M, Murata O (1992) Marine sterols. 23. 2a-Oxa-2-oxo-5α-hydroxy-3,4-dinorcholestane from the Arabian Sea red algaLaurencia obtusa. Tetrahedron Lett 33:519
San-Martín A, Rovirosa J, Muñoz O, Chen MHM, Guneratne RD, Clardy J (1983) The isolation and structure determination of chilenone A, a putative dimer of 2-methyl-3(2H)-furanone from the marine algaLaurencia chilensis. Tetrahedron Lett 24:4063
San-Martín A, Rovirosa J, Xu C, Lu HSM, Clardy J (1987) Further structural studies on the 2-methyl-3(2H)-furanone derived metabolites of the marine algaLaurencia chilensis. Tetrahedron Lett 28:6013
Bittner M, González F, Valdebenito H, Silva M, Paul VJ, Fenical W, Chen MHM, Clardy J (1987) A novel tetracyclic polyketal from the marine red algaLaurencia chilensis. Tetrahedron Lett 28:4031
Uenishi J, Mimura Y, Yonemitsu O (1996) Synthetic studies on cyclic polyketides isolated from red alga. Symp Chem Nat Prod 38:667
Wiedenfeld H, Knoch F, Koch M (1985) The crystal structure ofspiro-bis-pinnaketal, a newspiro compound fromLaurencia pinnatifida Lamouroux. Arch Pharmacol 318:289
Bernart MW, Gerwick WH, Corcoran EE, Lee AY, Clardy J (1992) Laurencione, a heterocycle from the red algaLaurencia spectabilis. Phytochemistry 31:1273
De Kimpe N, Georgieva A, Boeykens M, Lazar L (1995) Synthesis of laurencione, a labile dihydro-3(2H)-furanone derivative from the red algaLaurencia spectabilis. J Org Chem 60:5262
De Kimpe N, Georgieva A, Boeykens M, Kozekov I, Aelterman W (1996) New formal synthesis of laurencione, a labile dihydrofuranone derivative from the red algaLaurencia spectabilis. Synthesis 28:1131
Aelterman W, De Kimpe N, Kalinin V (1997) One-step synthesis of laurencione. J Nat Prod 60:385
Astashko D, Habrus Y, Yurevich S, Tyvorskii V (2013) Formal synthesis of laurencione via MgBr2-catalyzed rearrangement of α,β-epoxy ketones to 1,2-diketones. Chem Heterocycl Compd 49:676
Arroyo P, Valencia E, Valenzuela E, Zarraga M (1995) A new cyclic ether fromLaurencia chilensis. Bol Soc Chil Quim 40:221
Li YX, Li Y, Qian ZJ, Kim MM, Kim SK (2009) In vitro antioxidant activity of 5-HMF isolated from marine red algaLaurencia undulata in free radical mediated oxidative systems. J Microbiol Biotechnol 19:1319
Zeng L, Zhong Y, Su J, Wu H, Ma K (1996) A novel secondary metabolite of Chinese red algaLaurencia karlae. Chin J Chem 14:370
Du B, Zhong XY, Liao XJ, Xu WJ, Zhou XL, Xu SH (2010) A new antitumor arabinopyranoside fromLaurencia majuscula induces G2/M cell cycle arrest. Phytother Res 24:1447
Li Y, Li Y, Lee S, Qian Z, Kim S (2010) Inhibitors of oxidation and matrix metalloproteinases, floridoside, andd-isofloridoside from marine red algaLaurencia undulata. J Agric Food Chem 58:578
Aplin RT, Durham LJ, Kanazawa Y, Safe S (1967) 2-O-α-d-Galactopyranosylglycerol fromLaurencia pinnatifida. J Chem Soc C:1346
Siddhanta AK, Mody KH, Ramavat BK, Chauhan VD, Sharma M, Garg HS (1995) Characterization of sulfonoglycolipid from the red algaLaurencia pedicularioides. Bot Mar 38:329
Barma DK, Lu B, Baati R, Mioskowski C, Falck JR (2008) Convenient preparation of (Z)-α-halo-α,β-unsaturated aldehydes: synthesis of aLaurencia flexilis toxin. Tetrahedron Lett 49:4359
Basavaiah D, Suguna Hyma R (1996) Synthetic applications of the Baylis-Hillman reaction: simple synthesis of (2E)-2-butyloct-2-enal and (2E)-2-tridecylheptadec-2-enal. Tetrahedron 52:1253
Cardellina JH II, Moore RE (1978) Sphingosine derivatives from red algae of the Ceramiales. Phytochemistry 17:554
Higgs MD, Mulheirn LJ (1981) Hybridalactone; an unusual fatty acid metabolite from red algaLaurencia hybrida (Rhodophyta; Rhodomelaceae). Tetrahedron 37:4259
Corey EJ, De B, Ponder JW, Berg JM (1984) The stereochemistry and biosynthesis of hybridalactone, an eicosanoid fromLaurencia hybrida. Tetrahedron Lett 25:1015
Corey EJ, De B (1984) Total synthesis and stereochemistry of hybridalactone. J Am Chem Soc 106:2735
Ota K, Sugata N, Ohshiro Y, Kawashima E, Miyaoka H (2012) Total synthesis of marine eicosanoid (–)-hybridalactone. Chem Eur J 18:13531
Hickmann V, Kondoh A, Gabor B, Alcarazo M, Fürstner A (2011) Catalysis-based and protecting-group-free total syntheses of the marine oxylipins hybridalactone and the ecklonialactones A, B and C. J Am Chem Soc 133:13471
Maru N, Ohno O, Koyama T, Yamada K, Uemura D (2010) Papillamide, a novel fatty acid amide from the red algaLaurencia papillosa. Chem Lett 39:366
Higgs MD (1981) Antimicrobial components of the red algaLaurencia hybrida (Rhodophyta; Rhodomelaceae). Tetrahedron 37:4255
Bernart M, Gerwick WH (1988) Isolation of 12-(S)-HEPE from red algaMurrayella periclados and revision of structure of an acyclic icosanoid fromLaurencia hybrida. Implications to the biosynthesis of the marine prostanoid hybridolactone. Tetrahedron Lett 29:2015
Feng MT, Yu XQ, Yang P, Yang H, Lin K, Mao SC (2015) Two new antifungal polyunsaturated fatty acid ethyl esters from the red algaLaurencia okamurai. Chem Nat Comp 51:418
Khotimchenko SV, Gusarova IS (2004) Red algae of Peter the Great Bay as a source of arachidonic and eicosapentaenoic acids. Russ J Mar Biol 30:183
Vlietinck AJ, Apers S (2001) Biological screening methods in the search for pharmacologically active natural products. In: Tringali C (ed) Bioactive compounds from natural sources. Taylor & Francis, London, p 1
Kittakoop P (2015) Anticancer drugs and potential anticancer leads inspired by natural products. In: Atta-ur-Rahman (ed)Studies in natural products chemistry, vol 44. Elsevier, Amserdam, p 251
Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012
Bagya SK, Rajashree PV, Sam KG (2011) Preliminary anticancer screening and standardization of some indigenous medicinal plants using cell-biology and molecular biotechnology based models. Res J Med Plant 5:728
Fedorov SN, Shubina LK, Bode AM, Stonik VA, Dong Z (2007) Dactylone inhibits epidermal growth factor-induced transformation and phenotype expression of human cancer cells and induced G1-S arrest and apoptosis. Cancer Res 67:5914
San-Martin BA, Rovirosa RJ, Darias JJ, Astudillo SYL (1996) Semisintesis y actividad biologicade derivados del sesquiterpeno pacifenol. Bol Soc Chil Quim 41:403
Liu J, Ma L, Wu N, Liu G, Zheng L, Lin X (2014) Aplysin sensitizes cancer cells to TRAIL by suppressing P38 MAPK/surviving pathway. Mar Drugs 12:5072
Kim MM, Mendis E, Kim SK (2008)Laurencia okamurai extract containing laurinterol induces apoptosis in melanoma cells. J Med Food 11:260
König GM, Wright AD, Franzblau SG (2000) Assessment of antimycobacterial activity of a series of mainly marine derived natural products. Planta Med 66:337
Lang KL, Silva IT, Zimmermann LA, Lhullier C, Mañalich Arana MV, Palermo JA, Falkenberg M, Simões CMO, Schenkel EP, Durán FJ (2012) Cytotoxic activity of semi-synthetic derivatives of elatol and isoobtusol. Mar Drugs 10:2254
Campos A, Souza CB, Lhullier C, Falkenberg M, Schenkel EP, Ribeiro-do-Valle RM, Siqueira JM (2012) Anti-tumour effects of elatol, a marine derivative compound obtained from red algaeLaurencia microcladia. J Pharm Pharmacol 64:1146
Su JH, Dai CF, Huang HH, Wu YC, Sung PJ, Hsu CH, Sheu JH (2007) Terpenoid-related metabolites from a Formosan soft coralNephthea chabrolii. Chem Pharm Bull 55:594
Huang XC, Sun YL, Salim AA, Chen ZS, Capon RJ (2013) Parguerenes: marine red alga bromoditerpenes as inhibitors of P-glycoprotein (ABCB1) in multidrug resistant human cancer cells. Biochem Pharmacol 85:1257
Awad NE (2004) Bioactive brominated diterpenes from the marine red algaJania rubens (L.) Lamx. Phytother Res 18:275
Kumar SC, Gadewal N, Mohammed SMM (2013) Identification of leads from marine seaweeds against human β-tubulin. Lett Drug Design Discov 10:67
Athinaios N, Kazantzis A, Putzker K, Lewis J, Pitsinos EN (2009) Synthesis of novel laurenditerpenol analogues and their evaluation as HIF-1 activation inhibitors. Lett Org Chem 6:269
Matsuzawa S, Suzuki T, Suzuki M, Matsuda A, Kawamura T, Mizuno Y, Kikuchi K (1994) Thyrsiferyl 23-acetate is a novel specific inhibitor of protein phosphatase PP2A. FEBS Lett 356:272
Matsuzawa S, Kawamura T, Mitsuhashi S, Suzuki T, Matsuo Y, Suzuki M, Mizuno Y, Kikuchi K (1999) Thyrsiferyl 23-acetate and its derivatives induce apoptosis in various T- and B-leukemia cells. Bioorg Med Chem 7:381
Morita H, Kishi E, Takeya K, Itokawa H, Iitaka Y (1993) Squalene derivatives fromEurycoma longifolia. Phytochemistry 34:765
Pec MK, Moser-Thier K, Fernández JJ, Souto ML, Kubista E (1999) Growth inhibition by dehydrothyrsiferol — a non-Pgp modulator, derived from a marine red alga — in human breast cancer cell lines. Int J Oncol 14:739
Pec MK, Hellan M, Moser-Thier K, Fernández JJ, Souto ML, Kubista E (1998) Inhibitory effects of a novel marine terpenoid on sensitive and multidrug resistant KB cell lines. Anticancer Res 18:3027
Pec MK, Aguirre A, Fernández JJ, Souto ML, Dorta JF, Villar J (2002) Dehydrothyrsiferol does not modulate multidrug resistance-associated protein 1 resistance: a functional screening system for MRP1 substrates. Int J Mol Med 10:605
Pec MK, Aguirre A, Moser-Thier K, Fernández JJ, Souto ML, Dorta J, Diáz-González F, Villar J (2003) Induction of apoptosis in estrogen dependent and independent breast cancer cells by the marine terpenoid dehydrothyrsiferol. Biochem Pharmacol 65:1451
Pec MK, Artwohl M, Fernández JJ, Souto ML, Alvarez de la Rosa D, Giraldez T, Valenzuela-Fernández A, Díaz-González F (2007) Chemical modulation of VLA integrin affinity in human breast cancer cells. Exp Cell Res 313:1121
Souto ML, Manríquez CP, Norte M, Leira F, Fernández JJ (2003) The inhibitory effects of squalene-derived triterpenes on protein phosphatse PP2A. Bioorg Med Chem 13:1261
Nishiguchi GA, Graham J, Bouraoui A, Jacobs RS, Little RD (2006) 7,11-epi-Thyrsiferol: completion of its synthesis, evaluation of its antimitotic properties, and the further development of an SAR model. J Org Chem 71:5936
Vera B, Rodríguez AD, La Clair JL (2011) Aplysqualenol A binds to the light chain of dynein type 1 (DYNLL1). Angew Chem Int Ed 50:8134
Brogi S, Kladi M, Vagias C, Papazafiri P, Roussis V, Tafi A (2009) Pharmacophore modeling for qualitative prediction of antiestrogenic activity. J Chem Inf Model 49:2489
The Lancet. Editorial (2009) Urgently needed: new antibiotics. Lancet 374:1868
Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algaeLaurencia majuscula (Rhodomelaceae, Ceramiales). Biomol Eng 20:255
Vairappan CS, Kawamoto T, Miwa H, Suzuki M (2004) Potent antibacterial activity of halogenated compounds against antibiotic-resistant bacteria. Planta Med 70:1087
Sims JJ, Donnell MS, Leary JV, Lacy GH (1975) Antimicrobial agents from marine algae. Antimicrob Agents Chemother 7:320
Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55
Veiga-Santos P, Pelizzaro-Rocha KJ, Santos AO, Ueda-Nakamura T, Dias Filho BP, Silva SO, Sudatti DB, Bianco EM, Perreira RC, Nakamura CV (2010) In vitro anti-trypanosomal activity of elatol isolated from red seaweedLaurencia dendroidea. Parasitology 137:1661
Desoti VC, Lazarin-Bidóia D, Sudatti DB, Pereira RC, Alonso A, Ueda-Nakamura T, Filho BPD, Nakamura CV, Silva SDO (2012) Trypanosomal action of (–)-elatol involves an oxidative stress triggered by mitochondria dysfunction. Mar Drugs 10:1631
Desoti VC, Lazarin-Bidóia D, Sudatti DB, Pereira RC, Ueda-Nakamura T, Nakamura CV, Silva SDO (2014) Additional evidence of the trypanocidal action of (–)-elatol on amastigote forms through the involvement of reactive oxygen species. Mar Drugs 12:4973
Bianco EM, Pires L, Santos GKN, Dutra KA, Reis TNV, Vasconcelos ERTPP, Cocentino ALM, Navarro DMAF (2013) Larvicidal activity of seaweeds from northeastern Brazil and of a halogenated sesquiterpene against the dengue mosquito (Aedes aegypti). Ind Crops Prod 43:270
Orhan I, Şener B, Kaiser M, Brun R, Tasdemir D (2010) Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar Drugs 8:47
Gautam R, Jachak SM (2009) Recent developments in anti-inflammatory natural products. Med Res Rev 29:767
Naik SR, Sheth UK (1976) Inflammatory process and screening methods for anti-inflammatory agents — a review. J Postgrad Med 22:5
Wijesinghe WAJP, Kim E-A, Kang MC, Lee WW, Lee HS, Vairappan CS, Jeon YJ (2014) Assessment of anti-inflammatory effect of 5β-hydroxypalisadin B isolated from red seaweedLaurencia snackeyi in zebrafish embryo in vivo model. Environ Toxicol Pharmacol 37:110
Mayer AMS, Paul VJ, Fenical W, Norris JN, de Carvalho MS, Jacobs RS (1993) Phospholipase A2 inhibitors from marine algae. Hydrobiologia 260:521
Gil B, Ferrándiz ML, Sanz MJ, Terencio MC, Ubeda A, Rovirosa J, San-Martin A, Alcaraz MJ, Payá M (1995) Inhibition of inflammatory responses by epitaondiol and other marine natural products. Life Sci 57:25
Chatter R, Othman RB, Rabhi S, Kladi M, Tarhouni S, Vagias C, Roussis V, Lamia Guizane-Tabbane L, Kharrat R (2011) In vivo and in vitro anti-inflammatory activity of neorogioltriol, a new diterpene extracted from the red algaeLaurencia glandulifera. Mar Drugs 9:1293
Kim M, Li YX, Dewapriya P, Ryu B, Kim SK (2013) Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Rep 46:398
Farrokhnia M, Nabipour I (2014) Marine natural products as acetylcholinesterase inhibitor: comparative quantum mechanics and molecular docking study. Curr Comput Aid Drug Des 10:83
Ge N, Liang H, Liu Y, Ma AG, Han L (2013) Protective effect of aplysin on hepatic injury in ethanol-treated rats. Food Chem Toxicol 62:361
Kaul PN, Kulkarni SK, Kurosawa E (1978) Novel substances of marine origin as drug metabolism inhibitors. J Pharm Pharmacol 30:589
Kaul PN, Kulkarni SK (1978) New drug metabolism inhibitor of marine origin. J Pharm Sci 67:1293
Kaul PN (1982) Biomedical potential of the sea. Pure Appl Chem 54:1963
Farrokhnia M, Nabipour I, Bargahi A (2012) A theoretical study of dactylyne stereoisomers: a marine natural product fromAplysia dactylomela. J Theor Comput Chem 11:833
Hay ME, Fenical W, Gustafson K (1987) Chemical defense against diverse coral-reef herbivores. Ecology 68:1581
Pereira RC, Da Gama BAP, Teixeira VL, Yoneshigue-Valentin Y (2003) Ecological roles of natural products of the Brazilian red seaweedLaurencia obtusa. Braz J Biol 63:665
Izac RR, Poet SE, Fenical W, Van Engen D, Clardy J (1982) The structure of pacifigorgiol, an ichthyotoxic sesquiterpenoid from the Pacific gorgonian coralPacifigorgia cf.adamsii. Tetrahedron Lett 23:3743
Meyer BN, Ferrigni NR, Putmann JE, Jacobson LB, Nicols DE, McLaughlin JL (1982) Brine shrimp: a convenient bioassay for active plant constituents. Planta Med 45:31
Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Granmo A, Adams DR (2003) The development of a marine natural product-based antifouling paint. Biofouling 19:197
Dobretsov S, Abed RMM, Teplitski M (2013) Inhibition of biofouling by marine microorganisms. Biofouling 29:423
De Nys R, Leya T, Maximilien R, Afsar A, Nair PSR, Steinberg PD (1996) The need for standardized broad scale bioassay testing: a case study using the red algaLaurencia obtusa. Biofouling 10:213
Novaczek I (2001) A guide to the common edible and medicinal sea plants of the Pacific Islands. The University of the South Pacific/Secretariat of the Pacific Community, Suva
Author information
Authors and Affiliations
Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
Maria Harizani, Efstathia Ioannou & Vassilios Roussis
- Maria Harizani
You can also search for this author inPubMed Google Scholar
- Efstathia Ioannou
You can also search for this author inPubMed Google Scholar
- Vassilios Roussis
You can also search for this author inPubMed Google Scholar
Corresponding authors
Correspondence toEfstathia Ioannou orVassilios Roussis.
Editor information
Editors and Affiliations
Div. Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
A. Douglas Kinghorn
Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
Heinz Falk
Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, United Kingdom
Simon Gibbons
Graduate School of Pharmaceutical Science, Hokkaido University , Sapporo, Japan
Jun'ichi Kobayashi
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Harizani, M., Ioannou, E., Roussis, V. (2016). TheLaurencia Paradox: An Endless Source of Chemodiversity. In: Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products 102. Progress in the Chemistry of Organic Natural Products, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-319-33172-0_2
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-319-33170-6
Online ISBN:978-3-319-33172-0
eBook Packages:Chemistry and Materials ScienceChemistry and Material Science (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative