Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Nonparametric Growth Model for Brain Tumor Segmentation in Longitudinal MR Sequences

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 9556))

Included in the following conference series:

  • 1641Accesses

Abstract

Brain tumor segmentation and brain tumor growth assessment are inter-dependent and benefit from a joint evaluation. Starting from a generative model for multimodal brain tumor segmentation, we make use of a nonparametric growth model that is implemented as a conditional random field (CRF) including directed links with infinite weight in order to incorporate growth and inclusion constraints, reflecting our prior belief on tumor occurrence in the different image modalities. In this study, we validate this model to obtain brain tumor segmentations and volumetry in longitudinal image data. Moreover, we use the model to develop a probabilistic framework for estimating the likelihood of disease progression, i.e. tumor regrowth, after therapy. We present experiments for longitudinal image sequences with,, andflair images, acquired for ten patients with low and high grade gliomas.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag.34(10), 1993–2024 (2015)

    Article  Google Scholar 

  2. Bauer, S., Tessier, J., Krieter, O., Nolte, L.P., Reyes, M.: Integrated spatio-temporal segmentation of longitudinal brain tumor imaging studies. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Tu, Z. (eds.) MCV 2013. LNCS, vol. 8331, pp. 74–83. Springer, Switzerland (2013)

    Chapter  Google Scholar 

  3. Tarabalka, Y., et al.: Spatio-temporal video segmentation with shape growth or shrinkage constraint. IEEE Trans. Image Process.23(9), 3829–3840 (2014)

    Article MathSciNet  Google Scholar 

  4. Angelini, E.D., Clatz, O., Mandonnet, E., et al.: Glioma dynamics and computational models: a review. Curr. Med. Imaging Rev.3, 262–276 (2007)

    Article  Google Scholar 

  5. Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint segmentation and deformable registration of brain scans guided by a tumor growth model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 532–540. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimisation in vision. IEEE Trans. Pattern Anal. Mach. Intell.26(9), 1124–1137 (2004)

    Article  Google Scholar 

  7. Candemir, S., Akgül, Y.S.: Adaptive regularization parameter for graph cut segmentation. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 117–126. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Kohli, P., Torr, P.H.S.: Measuring uncertainty in graph cut solutions. Comput. Vis. Image Underst.112, 30–38 (2008)

    Article  Google Scholar 

  9. Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Neuroradiology, Klinikum Rechts der Isar, TU München, Munich, Germany

    Esther Alberts, Thomas Huber, Jan Bauer & Claus Zimmer

  2. Department of Computer Science, TU München, Munich, Germany

    Esther Alberts & Bjoern H. Menze

  3. TAO Research Project, Inria Saclay, Palaiseau, France

    Guillaume Charpiat

  4. Titane Research Project, Inria Sophia-Antipolis, Valbonne, France

    Yuliya Tarabalka

  5. Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany

    Marc-André Weber

  6. Institute for Advanced Study, TU München, Munich, Germany

    Esther Alberts & Bjoern H. Menze

Authors
  1. Esther Alberts

    You can also search for this author inPubMed Google Scholar

  2. Guillaume Charpiat

    You can also search for this author inPubMed Google Scholar

  3. Yuliya Tarabalka

    You can also search for this author inPubMed Google Scholar

  4. Thomas Huber

    You can also search for this author inPubMed Google Scholar

  5. Marc-André Weber

    You can also search for this author inPubMed Google Scholar

  6. Jan Bauer

    You can also search for this author inPubMed Google Scholar

  7. Claus Zimmer

    You can also search for this author inPubMed Google Scholar

  8. Bjoern H. Menze

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toEsther Alberts.

Editor information

Editors and Affiliations

  1. Istituto Italiano di Tecnologia (IIT), Genova, Italy

    Alessandro Crimi

  2. TU München, Computer Science, München, Germany

    Bjoern Menze

  3. Medical Informatics, University of Lübeck, Lübeck, Germany

    Oskar Maier

  4. Surgical Technology and Biomechanics, Universität Bern, Bern, Switzerland

    Mauricio Reyes

  5. Medical Informatics, University of Lübeck, Lübeck, Germany

    Heinz Handels

Rights and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alberts, E.et al. (2016). A Nonparametric Growth Model for Brain Tumor Segmentation in Longitudinal MR Sequences. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2015. Lecture Notes in Computer Science(), vol 9556. Springer, Cham. https://doi.org/10.1007/978-3-319-30858-6_7

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp