Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 9358))
Included in the following conference series:
2352Accesses
Abstract
We present an approach for computing dense scene flow from two large displacement RGB-D images. When dealing with large displacements the crucial step is to estimate the overall motion correctly. While state-of-the-art approaches focus on RGB information to establish guiding correspondences, we explore the power of depth edges. To achieve this, we present a new graph matching technique that brings sparse depth edges into correspondence. An additional contribution is the formulation of a continuous-label energy which is used to densify the sparse graph matching output. We present results on challenging Kinect images, for which we outperform state-of-the-art techniques.
This is a preview of subscription content,log in via an institution to check access.
Similar content being viewed by others
Notes
- 1.
Available on our web page
- 2.
Adjusting the weighting parameters of [15] did not improve the results.
References
Alvarez, L., Deriche, R., Papadopoulo, T., Sánchez, J.: Symmetrical dense optical flow estimation with occlusions detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 721–735. Springer, Heidelberg (2002)
Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: PatchMatch: a randomized correspondence algorithm for structural image editing. TOG28(3), 24 (2009)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. TPAMI24(4), 509–522 (2002)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. TPAMI23(11), 1222–1239 (2001)
Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. TPAMI33(3), 500–513 (2011)
Canny, J.: A computational approach to edge detection. TPAMI8(6), 679–698 (1986)
Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI18(03), 265–298 (2004)
Ferstl, D., Riegler, G., Ruether, M., Bischof, H.: CP-Census: a novel model for dense variational scene flow from RGB-D data. In: Proceedings of BMVC (2014)
Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last 10 years. IJPRAI 28(01) (2014)
Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.): Time-of-Flight and Depth Imaging. LNCS, vol. 8200. Springer, Heidelberg (2013)
Hadfield, S., Bowden, R.: Scene particles: unregularized particle-based scene flow estimation. TPAMI36(3), 564–576 (2014)
Hammer, P., Hansen, P., Simeone, B.: Roof duality, complementation and persistency in quadratic 0–1 optimization. Math. Program.28(2), 121–155 (1984)
Herbst, E., Ren, X., Fox, D.: RGB-D flow: Dense 3-d motion estimation using color and depth. In: Proceedings of ICRA, pp. 2276–2282. IEEE (2013)
Hornácek, M., Fitzgibbon, A., Rother, C.: Sphereflow: 6 DoF scene flow from RGB-D pairs. In: Proceedings of CVPR. IEEE (2014)
Huguet, F., Devernay, F.: A variational method for scene flow estimation from stereo sequences. In: Proceedings of ICCV. IEEE (2007)
Jaimez, M., Souiai, M., Gonzalez-Jimenez, J., Cremers, D.: A primal-dual framework for real-time dense RGB-D scene flow. In: Proceedings of ICRA. IEEE (2015)
Leordeanu, M., Zanfir, A., Sminchisescu, C.: Locally affine sparse-to-dense matching for motion and occlusion estimation. In: Proceedings of ICCV. IEEE (2013)
Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV60(2), 91–100 (2004)
Quiroga, J., Devernay, F., Crowley, J.: Local/global scene flow estimation. In: Proceedings of ICIP. IEEE (2013)
Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate motion field estimation from stereo image sequences in real-time. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 582–595. Springer, Heidelberg (2010)
Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: edge-preserving interpolation of correspondences for optical flow (2015).arXiv:1501.02565
Sellent, A., Ruhl, K., Magnor, M.: A loop-consistency measure for dense correspondences in multi-view video. Image Vis. Comput.30(9), 641–654 (2012)
Smith, D.K.: Network flows: theory, algorithms, and applications. J. Oper. Res. Soc.45(11), 1340–1340 (1994)
Torresani, L., Kolmogorov, V., Rother, C.: A dual decomposition approach to feature correspondence. TPAMI35(2), 259–271 (2013)
Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene flow. In: Proceedings of ICCV, vol. 2, pp. 722–729. IEEE (1999)
Verhagen, B., Timofte, R., Van Gool, L.: Scale-invariant line descriptors for wide baseline matching. In: Proceedings of WACV. IEEE (2014)
Vogel, C., Schindler, K., Roth, S.: Piecewise rigid scene flow. In: Proceedings of ICCV. IEEE (2013)
Wang, Y., Zhang, J., Liu, Z., Wu, Q., Chou, P., Zhang, Z., Jia, Y.: Completed dense scene flow in RGB-D space. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014 Workshops. LNCS, vol. 9008, pp. 191–205. Springer, Heidelberg (2015)
Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: large displacement optical flow with deep matching. In: Proceedings of ICCV. IEEE (2013)
Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. TPAMI34(9), 1744–1757 (2012)
Yoon, K.J., Kweon, I.S.: Locally adaptive support-weight approach for visual correspondence search. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, vol. 2, pp. 924–931. IEEE (2005)
Zhang, L., Koch, R.: An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Vis. Commun. Image Represent.24(7), 794–805 (2013)
Author information
Authors and Affiliations
TU Dresden, Dresden, Germany
Hassan Abu Alhaija, Anita Sellent & Carsten Rother
Heidelberg University, Heidelberg, Germany
Hassan Abu Alhaija & Daniel Kondermann
TU Darmstadt, Darmstadt, Germany
Anita Sellent
- Hassan Abu Alhaija
You can also search for this author inPubMed Google Scholar
- Anita Sellent
You can also search for this author inPubMed Google Scholar
- Daniel Kondermann
You can also search for this author inPubMed Google Scholar
- Carsten Rother
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toHassan Abu Alhaija.
Editor information
Editors and Affiliations
Institute of Computer Science III, University of Bonn, Bonn, Germany
Juergen Gall
MPI for Intelligent Systems, University of Tübingen, Tübingen, Germany
Peter Gehler
Computer Vision Group, Visual Computing Institute, RWTH Aachen, Aachen, Germany
Bastian Leibe
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Abu Alhaija, H., Sellent, A., Kondermann, D., Rother, C. (2015). GraphFlow – 6D Large Displacement Scene Flow via Graph Matching. In: Gall, J., Gehler, P., Leibe, B. (eds) Pattern Recognition. DAGM 2015. Lecture Notes in Computer Science(), vol 9358. Springer, Cham. https://doi.org/10.1007/978-3-319-24947-6_23
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-319-24946-9
Online ISBN:978-3-319-24947-6
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative