Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Emotion Detection in Ageing Adults from Physiological Sensors

  • Conference paper
  • First Online:

Abstract

The increasing life expectancy is causing a fast ageing population around the globe, which is raising the demand on assistive systems based on ambient intelligence. While numerous papers have focused on the physical aspects in elderly, only a few works have attempted to regulate their emotional state. In this work, a new approach for monitoring and detecting the emotional state in elderly is presented. First, different physiological signals are acquired by means of wearable sensors, and data are transmitted to the embedded system. Next, noise and artifacts are removed by applying different signal processing techniques, depending on the signal behavior. Finally, several temporal and statistical markers are extracted and used to feed the classification model. In this very first version, a logistic regression model is used to detect two possible emotional states. In order to calibrate the model and adjust the boundary decision, twenty volunteers have agreed to be monitored and recorded to train the model. Finally, a decision maker regulates the environment, acting directly upon the elderly’s emotional state.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. World Health Organization, inAgeing and Life Course (2011)

    Google Scholar 

  2. S. Mowafey, S. Gardner, A novel adaptive approach for home care ambient intelligent environments with an emotion-aware system, inUKACC International Conference on Control (Cardiff, UK, 2012), pp. 771–777, 3–5 Sept 2012

    Google Scholar 

  3. M.A. Hanson, H.C. Powell Jr., A.T. Barth, K. Ringgenberg, B.H. Calhoun, J.H. Aylor, J. Lach, Body area sensors networks: challenges and opportunities, inIEEE Computer Society, pp. 58–65, 2009

    Google Scholar 

  4. A. Fernández-Caballero, J.M. Latorre, J.M. Pastor, A. Fernández-Sotos, Improvement of the elderly quality of life and care through smart emotion regulation, inAmbient Assisted Living and Daily Activities, pp. 348–355, 2014

    Google Scholar 

  5. S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, I. Patras, DEAP: a database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput.3(1), 18–31 (2012)

    Google Scholar 

  6. M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, V.C.M. Leung, Body area networks: a survey. Mobile Netw. Appl.16, 171–193 (2011)

    Article  Google Scholar 

  7. P. Remagnino, G.L. Foresti, Ambient intelligence: a new multidisciplinary paradigm. IEEE Trans. Syst. Man Cybern. Part A35(1), 1–6 (2005)

    Article  Google Scholar 

  8. J.A. Russell, A circumplex model of affect. J. Pers. Soc. Psychol.39(6), 1161–1178 (1980)

    Article  Google Scholar 

  9. J.A. Healey, R.W. Picard, Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Trans. Syst.6(2), 156–166 (2005)

    Article  Google Scholar 

  10. J.A. Veltman, A.W.K. Gaillard, Physiological indicies of workload in a simulated flight task. Biol. Psychol.42, 323–342 (1996)

    Article  Google Scholar 

  11. K. Nagamine, A. Nozawa, H. Ide, Evaluation of emotions by Nasal Skin temperature on auditory stimulus and olfactory stimulus. IEEJ Trans. EIS124(9), 1914–1915 (2004)

    Article  Google Scholar 

  12. J. Herbert, Fortnightly review: stress, the brain, and mental illness. British Med. J.315, 530–535 (1997)

    Article  Google Scholar 

  13. L. Lidberg, G. Wallin, Sympathhetic skin nerve discharges in relation to amplitude of skin resistance responses. Psychopysiology18(3), 268–270 (1981)

    Article  Google Scholar 

  14. P.H. Venables, M.J. Christie, Electrodermal activity,Techniques in, Psychophysiology (2012)

    Google Scholar 

  15. R. Chowdhury, M. Reaz, A.M. Mohd, A. Bakar, K. Chellappan, T. Chang, Surface electromyography signal processing and classification techniques. Sensors13, 12431–12466 (2013)

    Article  Google Scholar 

  16. G. Wei, F. Tian, G. Tang, C. Wang, A wavelet-based method to predict muscle forces from surface electromyography signals in weightlifting. J. Bionic Eng.9, 48–58 (2012)

    Article  Google Scholar 

  17. B. Hudgins, P. Parker, R.N. Scott, A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng.40, 8294 (1993)

    Article  Google Scholar 

  18. M. Malik, J.T. Bigger, A.J. Camm, R.E. Kleiger, A. Malliani, A.J. Moss, P.J. Schwartz, Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J.17(2), 1043–1065 (1996)

    Google Scholar 

  19. P. Leijdekkers, V. Gay, W. Frederick, CaptureMyEmotion: a mobile app to improve emotion learning for autistic children using sensors, in26th IEEE International Symposium on Computer-Based Medical Systems, pp. 381–384, 2013

    Google Scholar 

  20. P.J. Lang, M.M. Bradley, B.N. Cuthbert,International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual (Technical Report A-8. University of Florida, Gainesville, 2008)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Spanish Ministerio de Economía y Competitividad / FEDER under TIN2013-47074-C2-1-R grant.

Author information

Authors and Affiliations

  1. Universidad de Castilla-La Mancha, Instituto de Tecnologías Audiovisuales, 16071, Cuenca, Spain

    Arturo Martínez-Rodrigo, Roberto Zangróniz & José Manuel Pastor

  2. Universidad de Castilla-La Mancha, Instituto de Investigacin En Discapacidades Neurolgicas, 02071, Albacete, Spain

    José Miguel Latorre

  3. Universidad de Castilla-La Mancha, Instituto de Investigacin En Informitica de Albacete, 02071, Albacete, Spain

    Antonio Fernández-Caballero

Authors
  1. Arturo Martínez-Rodrigo

    You can also search for this author inPubMed Google Scholar

  2. Roberto Zangróniz

    You can also search for this author inPubMed Google Scholar

  3. José Manuel Pastor

    You can also search for this author inPubMed Google Scholar

  4. José Miguel Latorre

    You can also search for this author inPubMed Google Scholar

  5. Antonio Fernández-Caballero

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Computer Science and Engineering Department, Qatar University, College of Engineering, Doha, Qatar

    Amr Mohamed

  2. Departamento de Informatica, ALGORITMI Centre, University of Minho, Braga, Portugal

    Paulo Novais

  3. Escola Superior de Tecnologia e Gestäo de Leiria, Instituto Politécnico de Leiria, Leiria, Portugal

    António Pereira

  4. Departamento de Informática y Automática, University of Salamanca, Salamanca, Spain

    Gabriel Villarrubia González

  5. Departamento de Sistemas Informáticos, University of Castilla-La Mancha, Albacete, Spain

    Antonio Fernández-Caballero

Rights and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Latorre, J.M., Fernández-Caballero, A. (2015). Emotion Detection in Ageing Adults from Physiological Sensors. In: Mohamed, A., Novais, P., Pereira, A., Villarrubia González, G., Fernández-Caballero, A. (eds) Ambient Intelligence - Software and Applications. Advances in Intelligent Systems and Computing, vol 376. Springer, Cham. https://doi.org/10.1007/978-3-319-19695-4_26

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp