Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Using Hyperspectral Remote Sensing Identification of Wheat Take-All Based on SVM

  • Conference paper
  • First Online:

Abstract

Wheat take-all is quarantine diseaseand took place more and more severer in recent years, It is important to monitor it effectively. This article using hyperspectral remote sensing, through the different levels of the incidence of wheat take-all canopy spectral reflectance data collection analysis and processing, using support vector machine(SVM) classification method to build Wheat Take-all disease level prediction model for the prediction and prevention for wheat take-all to provide technical support. Results shows that the wheat canopy spectral reflectance change significantly under the influence of the disease; through data analysis, choose 700~900nm wavelength band training as sensitive to model the performance of the best results; Upon examination, constructed the forecasting model based on this band to predict when the predicted value and the actual value of the correlation coefficient up to 0.9434. The results of this study will not only provide theoretical and technical support for wheat no-destructive detection and safety production, but also shed light on the development of novel strategy to detect and control crop pest and disease, which has great significance to the food safety.

Similar content being viewed by others

Keywords

References

  1. Liu, X.-Y., Zang, Z., Sun, H., Lin, H.: Discrimination of Cunninghamia lanceolata and Pinus massoniana based on hyperspectral data. Journal of Central South University of Forestry & Technology (11), 30–33 (2011)

    Google Scholar 

  2. Xiu, L.-N., Liu, X.-N., Liu, M.-L.: Analysis and Modeling of Hyperspectral Singularity in Rice under Cd Pollution. Spectroscopy and Spectral Analysis (01), 0192–0196 (2011)

    Google Scholar 

  3. Wang, H.-G., Ma, Z.-H., Wang, T., Cai, C.-J., An, H., Zhang, L.-D.: Application of Hyperspectral Data to the Classification and Identification of Severity of Wheat Stripe Rust (09), 1811–1844 (2007)

    Google Scholar 

  4. Liu, B., Fang, J.Y., Liu, X., Zhang, L.F., Zhang, B., Tong, Q.X.: Research on Crop-Weed Discrimination Using a Field Imaging Spectrometer. Spectroscopy and Spectral Analysis (07), 1830–1833 (2010)

    Google Scholar 

  5. Li, W.-G., Zhao, C.-J., Wang, J.-H., Liu, L.-Y., Song, X.-Y.: Monitoring the Growth Condition of Winter Wheat in Jointing Stage Based on Land Sat TM Image. Journal of Triticeae Crops 27(3), 523–527 (2007)

    Google Scholar 

  6. Zhang, D.-Y., Zhang, J.-C., Zhu, D.-Z., Wang, J.-H., Luo, J.-H., Zhao, J.-L., Huang, W.-J.: Investigation of the Hyperspectral Image Characteristics of Wheat Leaves under Different Stress. Spectroscopy and Spectral Analysis (04), 1101–1105 (2011)

    Google Scholar 

  7. Huang, M.-Y., Huang, W.-J., Liu, L.-Y., Huang, Y.-D., Wang, J.-H., Zhao, C.-J., Wan, A.-M.: Spectral reflectance feature of winter wheat single leaf infected with stripe rust and severity level inversion. Transactions of the CSAE 20(1), 176–180 (2004)

    Google Scholar 

  8. Chen, W., Yu, X.-C., Zhang, P.-Q., Wang, Z.-C., Wang, H.: Object recognition based on one-class support vector machine in hyperspectral image. Journal of Computer Applications 2011(08), 02092–02096 (2096)

    Google Scholar 

  9. Qiao, H.-B., Cheng, D.-F., Sun, J.-R., Tian, Z., Chen, L., Lin, F.-R.: Effects of wheat aphid on spectrum reflectance of the wheat canopy. Plant Protection 31(2), 21–26 (2005)

    Google Scholar 

  10. Wang, Z.-H., Ding, L.-X.: Tree Species Discrimination Based on Leaf-Level Hyperspectral Characteristic Analysis. Spectroscopy and Spectral Analysis 30(7), 1825–1829 (2010)

    Google Scholar 

  11. Tan, K., Du, P.-J.: hyperspectral remote sensing image classification based on support vector machine. J. Infrared Millim. Waves (2), 0123–0128 (2008)

    Google Scholar 

  12. Deng, R., Ma, Y.-J., Liu, Y.-M.: Support Vector Machine Multi-class Classification Based on an Improved Cross Validation Algorithm. Journal of Tianjin University of Science & Technology (06), 0058–0061 (2007)

    Google Scholar 

  13. Feng, G.-H.: Parameter optimizing for Support Vector Machines classification. Computer Engineering and Applications 47(3), 123–124 (2011)

    Google Scholar 

  14. Zhang, X.-G.: Introduction statistical learning theory and support vector machines. Act Automatica Sinica 1(26), 32–42 (2000)

    MathSciNet  Google Scholar 

  15. Li, X.-Y., Zhang, X.-F., Shen, L.-S.: A Selection Means on the Parameter of Radius Basis Function. Acta Electronica Sinica (12A), 2459–2463 (2005)

    Google Scholar 

  16. Du, P.-J., Lin, H., Sun, D.-X.: On Progress of Support Vector Machine Based Hyperspectral RS Classification. Acta Geodaetica Et Cartographica Sinica (12), 0037–0040 (2006)

    Google Scholar 

  17. Deng, W., Zhang, L.-D., He, X.-K., Mueller, J., Zeng, A.-J.: SVM-Based Spectral Recognition of Corn and Weeds at Seedling Stage in Fields. Spectroscopy and Spectral Analysis (7), 1906–1910 (2009)

    Google Scholar 

  18. Ma, X.-L., Ren, Z.-Y., Wang, Y.-L.: Research on Hyperspectral Remote Sensing Image Classification Based on SVM. System Sciences and Comprehensive Studies in Agriculture (2), 0204–0207 (2009)

    Google Scholar 

  19. Jie, L.V., Xiang-nan, L.I.U.: Hyperspectral Remote Sensing Estimation Model for Cd Concentration in Rice Using Support Vector Machines. Journal Of Applied Sciences-Electronics Information Engineering (01), 0105-0111 (2012)

    Google Scholar 

  20. Mahlein, A.-K., Rumpf, T., Welke, P., Dehne, H.-W., Plumer, L., Steiner, U., Oerke, E.-C.: Development of spectral indices for detecting and identifying plan diseases. Remote Sensing of Environment (128), 21–30 (2013)

    Google Scholar 

  21. Zhang, M., Qin, Z., Liu, X., Ustin, S.L.: Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation (4), 295–310 (2003)

    Google Scholar 

  22. Ryu, C., Suguri, M., Umeda, M.: Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing. Field Crops Research (122), 214–224 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. College of Information and Management Science, Henan Agriculture University, Zhengzhou, 450046, China

    Hongbo Qiao, Hongtao Jiao, Yue Shi, Lei Shi, Wei Guo & Xinming Ma

Authors
  1. Hongbo Qiao

    You can also search for this author inPubMed Google Scholar

  2. Hongtao Jiao

    You can also search for this author inPubMed Google Scholar

  3. Yue Shi

    You can also search for this author inPubMed Google Scholar

  4. Lei Shi

    You can also search for this author inPubMed Google Scholar

  5. Wei Guo

    You can also search for this author inPubMed Google Scholar

  6. Xinming Ma

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toHongbo Qiao.

Editor information

Editors and Affiliations

  1. China Agricultural University, Beijing, China

    Daoliang Li

  2. China Agricultural University, Beijing, China

    Yingyi Chen

Rights and permissions

Copyright information

© 2015 IFIP International Federation for Information Processing

About this paper

Cite this paper

Qiao, H., Jiao, H., Shi, Y., Shi, L., Guo, W., Ma, X. (2015). Using Hyperspectral Remote Sensing Identification of Wheat Take-All Based on SVM. In: Li, D., Chen, Y. (eds) Computer and Computing Technologies in Agriculture VIII. CCTA 2014. IFIP Advances in Information and Communication Technology, vol 452. Springer, Cham. https://doi.org/10.1007/978-3-319-19620-6_3

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp