Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 9082))
Included in the following conference series:
1925Accesses
9Citations
Abstract
A local blur estimation method is proposed, based on the difference between the gradient and the residue of the toggle mapping. This method is able to compare the quality of images with different content and does not require a contour detection step. Qualitative results are shown in the context of the LINX project. Then, quantitative results are given on DIQA database, outperforming the combination of classical blur detection methods reported in the literature.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 5719
- Price includes VAT (Japan)
- Softcover Book
- JPY 7149
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blanchet, G., Moisan, L.: An explicit sharpness index related to global phase coherence. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1065–1068. IEEE (2012)
Blando, L.R., Kanai, J., Nartker, T.A.: Prediction of OCR accuracy using simple image features. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 1, pp. 319–322. IEEE (1995)
Brenner, J.F., Dew, B.S., Horton, B., King, T., Neurath, P.W., Selles, W.D.: An automated microscope for cytologic research a preliminary evaluation. Journal of Histochemistry & Cytochemistry 24(1), 100–111 (1976)
Cao, G., Zhao, Y., Ni, R.: Edge-based blur metric for tamper detection. Journal of Information Hiding and Multimedia Signal Processing 1(1), 20–27 (2010)
Chen, M.-J., Bovik, A.C.: No-reference image blur assessment using multiscale gradient. EURASIP Journal on Image and Video Processing 2011(1), 1–11 (2011)
Ciancio, A., da Costa, A.L.N.T., da Silva, E.A.B., Said, A., Samadani, R., Obrador, P.: No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Transactions on Image Processing 20(1), 64–75 (2011)
Fabrizio, J., Marcotegui, B., Cord, M.: Text segmentation in natural scenes using toggle-mapping. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 2373–2376. IEEE (2009)
Firestone, L., Cook, K., Culp, K., Talsania, N., Preston, K.: Comparison of autofocus methods for automated microscopy. Cytometry 12(3), 195–206 (1991)
Groen, F.C.A., Young, I.T., Ligthart, G.: A comparison of different focus functions for use in autofocus algorithms. Cytometry 6(2), 81–91 (1985)
Hassen, R., Wang, Z., Salama, M.: No-reference image sharpness assessment based on local phase coherence measurement. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 2434–2437. IEEE (2010)
Jarvis, R.A.: Focus optimization criteria for computer image-processing. Microscope 24(2), 163–180 (1976)
Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of digital images. Pattern Recognition 7(1), 53–58 (1975)
Kumar, J., Ye, P., Doermann, D.: A dataset for quality assessment of camera captured document images. In: Iwamura, M., Shafait, F. (eds.) CBDAR 2013. LNCS, vol. 3857, pp. 113–125. Springer, Heidelberg (2014)
Leclaire, A., Moisan, L., et al.: No-reference image quality assessment and blind deblurring with sharpness metrics exploiting fourier phase information (2014)
Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: Perceptual blur and ringing metrics: application to jpeg2000. Signal Processing: Image Communication 19(2), 163–172 (2004)
Nayar, S.K., Nakagawa, Y.: Shape from focus. IEEE Transactions on Pattern analysis and machine intelligence 16(8), 824–831 (1994)
Chern, N.N.K., Neow, P.A., Ang, V.M.H.: Practical issues in pixel-based autofocusing for machine vision. In: Proceedings of 2001 IEEE International Conference on Robotics and Automation, ICRA, vol. 3, pp. 2791–2796. IEEE (2001)
Peng, X., Cao, H., Subramanian, K., Prasad, R., Natarajan, P.: Automated image quality assessment for camera-captured OCR. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 2621–2624. IEEE (2011)
Pertuz, S., Puig, D., Garcia, M.A.: Analysis of focus measure operators for shape-from-focus. Pattern Recognition 46(5), 1415–1432 (2013)
Rusiñol, M., Chazalon, J., Ogier, J.-M.: Combining focus measure operators to predict OCR accuracy in mobile-captured document images. In: 2014 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 181–185. IEEE (2014)
Schlag, J.F., Sanderson, A.C., Neuman, C.P., Wimberly, F.C.: Implementation of automatic focusing algorithms for a computer vision system with camera control. Carnegie-Mellon Univ., the Robotics Inst. (1983)
Serra, J.: Toggle mappings. From pixels to features,61–72 (1988)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)
Wang, Z., Bovik, A.C.: Reduced-and no-reference image quality assessment. IEEE Signal Processing Magazine 28(6), 29–40 (2011)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)
Ye, P., Doermann, D.: Learning features for predicting OCR accuracy. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 3204–3207. IEEE (2012)
Author information
Authors and Affiliations
CMM - Centre for Mathematical Morphology, MINES ParisTech, PSL Research University, 35 rue Saint Honoré - Fontainebleau, Paris, France
Théodore Chabardès & Beatriz Marcotegui
- Théodore Chabardès
Search author on:PubMed Google Scholar
- Beatriz Marcotegui
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toThéodore Chabardès.
Editor information
Editors and Affiliations
University of Iceland, Reykjavik, Iceland
Jón Atli Benediktsson
Université de Grenoble Alpes, Grenoble, France
Jocelyn Chanussot
ESIEE Paris, Noisy-le-Grand Cedex, France
Laurent Najman
ESIEE Paris, Noisy-le-Grand Cedex, France
Hugues Talbot
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chabardès, T., Marcotegui, B. (2015). Local Blur Estimation Based on Toggle Mapping. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_13
Download citation
Publisher Name:Springer, Cham
Print ISBN:978-3-319-18719-8
Online ISBN:978-3-319-18720-4
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative