Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Local Blur Estimation Based on Toggle Mapping

  • Conference paper

Abstract

A local blur estimation method is proposed, based on the difference between the gradient and the residue of the toggle mapping. This method is able to compare the quality of images with different content and does not require a contour detection step. Qualitative results are shown in the context of the LINX project. Then, quantitative results are given on DIQA database, outperforming the combination of classical blur detection methods reported in the literature.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blanchet, G., Moisan, L.: An explicit sharpness index related to global phase coherence. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1065–1068. IEEE (2012)

    Google Scholar 

  2. Blando, L.R., Kanai, J., Nartker, T.A.: Prediction of OCR accuracy using simple image features. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 1, pp. 319–322. IEEE (1995)

    Google Scholar 

  3. Brenner, J.F., Dew, B.S., Horton, B., King, T., Neurath, P.W., Selles, W.D.: An automated microscope for cytologic research a preliminary evaluation. Journal of Histochemistry & Cytochemistry 24(1), 100–111 (1976)

    Article  Google Scholar 

  4. Cao, G., Zhao, Y., Ni, R.: Edge-based blur metric for tamper detection. Journal of Information Hiding and Multimedia Signal Processing 1(1), 20–27 (2010)

    Google Scholar 

  5. Chen, M.-J., Bovik, A.C.: No-reference image blur assessment using multiscale gradient. EURASIP Journal on Image and Video Processing 2011(1), 1–11 (2011)

    Article MATH  Google Scholar 

  6. Ciancio, A., da Costa, A.L.N.T., da Silva, E.A.B., Said, A., Samadani, R., Obrador, P.: No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Transactions on Image Processing 20(1), 64–75 (2011)

    Article MathSciNet  Google Scholar 

  7. Fabrizio, J., Marcotegui, B., Cord, M.: Text segmentation in natural scenes using toggle-mapping. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 2373–2376. IEEE (2009)

    Google Scholar 

  8. Firestone, L., Cook, K., Culp, K., Talsania, N., Preston, K.: Comparison of autofocus methods for automated microscopy. Cytometry 12(3), 195–206 (1991)

    Article  Google Scholar 

  9. Groen, F.C.A., Young, I.T., Ligthart, G.: A comparison of different focus functions for use in autofocus algorithms. Cytometry 6(2), 81–91 (1985)

    Article  Google Scholar 

  10. Hassen, R., Wang, Z., Salama, M.: No-reference image sharpness assessment based on local phase coherence measurement. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 2434–2437. IEEE (2010)

    Google Scholar 

  11. Jarvis, R.A.: Focus optimization criteria for computer image-processing. Microscope 24(2), 163–180 (1976)

    Google Scholar 

  12. Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of digital images. Pattern Recognition 7(1), 53–58 (1975)

    Article MATH MathSciNet  Google Scholar 

  13. Kumar, J., Ye, P., Doermann, D.: A dataset for quality assessment of camera captured document images. In: Iwamura, M., Shafait, F. (eds.) CBDAR 2013. LNCS, vol. 3857, pp. 113–125. Springer, Heidelberg (2014)

    Google Scholar 

  14. Leclaire, A., Moisan, L., et al.: No-reference image quality assessment and blind deblurring with sharpness metrics exploiting fourier phase information (2014)

    Google Scholar 

  15. Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: Perceptual blur and ringing metrics: application to jpeg2000. Signal Processing: Image Communication 19(2), 163–172 (2004)

    Google Scholar 

  16. Nayar, S.K., Nakagawa, Y.: Shape from focus. IEEE Transactions on Pattern analysis and machine intelligence 16(8), 824–831 (1994)

    Article  Google Scholar 

  17. Chern, N.N.K., Neow, P.A., Ang, V.M.H.: Practical issues in pixel-based autofocusing for machine vision. In: Proceedings of 2001 IEEE International Conference on Robotics and Automation, ICRA, vol. 3, pp. 2791–2796. IEEE (2001)

    Google Scholar 

  18. Peng, X., Cao, H., Subramanian, K., Prasad, R., Natarajan, P.: Automated image quality assessment for camera-captured OCR. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 2621–2624. IEEE (2011)

    Google Scholar 

  19. Pertuz, S., Puig, D., Garcia, M.A.: Analysis of focus measure operators for shape-from-focus. Pattern Recognition 46(5), 1415–1432 (2013)

    Article MATH  Google Scholar 

  20. Rusiñol, M., Chazalon, J., Ogier, J.-M.: Combining focus measure operators to predict OCR accuracy in mobile-captured document images. In: 2014 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 181–185. IEEE (2014)

    Google Scholar 

  21. Schlag, J.F., Sanderson, A.C., Neuman, C.P., Wimberly, F.C.: Implementation of automatic focusing algorithms for a computer vision system with camera control. Carnegie-Mellon Univ., the Robotics Inst. (1983)

    Google Scholar 

  22. Serra, J.: Toggle mappings. From pixels to features,61–72 (1988)

    Google Scholar 

  23. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)

    Google Scholar 

  24. Wang, Z., Bovik, A.C.: Reduced-and no-reference image quality assessment. IEEE Signal Processing Magazine 28(6), 29–40 (2011)

    Article  Google Scholar 

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)

    Article  Google Scholar 

  26. Ye, P., Doermann, D.: Learning features for predicting OCR accuracy. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 3204–3207. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. CMM - Centre for Mathematical Morphology, MINES ParisTech, PSL Research University, 35 rue Saint Honoré - Fontainebleau, Paris, France

    Théodore Chabardès & Beatriz Marcotegui

Authors
  1. Théodore Chabardès
  2. Beatriz Marcotegui

Corresponding author

Correspondence toThéodore Chabardès.

Editor information

Editors and Affiliations

  1. University of Iceland, Reykjavik, Iceland

    Jón Atli Benediktsson

  2. Université de Grenoble Alpes, Grenoble, France

    Jocelyn Chanussot

  3. ESIEE Paris, Noisy-le-Grand Cedex, France

    Laurent Najman

  4. ESIEE Paris, Noisy-le-Grand Cedex, France

    Hugues Talbot

Rights and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chabardès, T., Marcotegui, B. (2015). Local Blur Estimation Based on Toggle Mapping. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_13

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp