Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Feasibility Study of Using the NeuCube Spiking Neural Network Architecture for Modelling Alzheimer’s Disease EEG Data

  • Chapter

Abstract

The paper presents a feasibility analysis of a novel Spiking Neural Network (SNN) architecture called NeuCube [10] for classification and analysis of functional changes in brain activity of Electroencephalography (EEG) data collected amongst two groups: control and Alzheimer’s Disease (AD). Excellent classification results of 100% test accuracy have been achieved and these have also been compared with traditional machine learning techniques. Outputs confirmed that the NeuCube is better suited to model, classify, interpret and understand EEG data and the brain processes involved. Future applications of a NeuCube model are discussed including its use as an indicator of the early onset of Mild Cognitive Impairment(MCI) to study degeneration of the pathology toward AD.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benuskova, L., Kasabov, N.: Computational Neurogenetic Modelling. Springer, NY (2007)

    Book  Google Scholar 

  2. Delbruck, T.: jaer open source project (2007),http://jaer.wiki.sourceforge.net (April 14, 2014)

  3. Fawcett, T.: An introduction to roc analysis. Pattern Recognition Letters 27(8), 861–874 (2006)

    Article MathSciNet  Google Scholar 

  4. Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D.: Random forest-based similarity measures for multi-modal classification of alzheimer’s disease. NeuroImage 65, 167–175 (2013)

    Article  Google Scholar 

  5. Indiveri, G., Linares-Barranco, B., Hamilton, T.J., Van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P., Häfliger, P., Renaud, S., et al.: Neuromorphic silicon neuron circuits. Frontiers in Neuroscience 5 (2011)

    Google Scholar 

  6. Izhikevich, E.M.: Polychronization: Computation with spikes. Neural Computation 18(2), 245–282 (2006)

    Article MATH MathSciNet  Google Scholar 

  7. Kasabov, N.: Evolving connectionist systems: The knowledge engineering approach. Springer (2007)

    Google Scholar 

  8. Kasabov, N., Capecci, E.: Spiking neural network methodology for modelling, recognition and understanding of eeg spatio-temporal data measuring cognitive processes during mental tasks. Information Sciences (2014)

    Google Scholar 

  9. Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G.: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Networks 41, 188–201 (2013)

    Article  Google Scholar 

  10. Kasabov, N.K.: Neucube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Networks 52, 62–76 (2014)

    Article  Google Scholar 

  11. Labate, D., Foresta, F., Morabito, G., Palamara, I., Morabito, F.C.: Entropic measures of eeg complexity in alzheimer’s disease through a multivariate multiscale approach. IEEE Sensors Journal 13(9), 3284–3292 (2013)

    Article  Google Scholar 

  12. Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A., Fox, P.T.: Automated talairach atlas labels for functional brain mapping. Human Brain Mapping 10(3), 120–131 (2000)

    Article  Google Scholar 

  13. Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: Span: Spike pattern association neuron for learning spatio-temporal sequences. International Journal of Neural Systems (2012)

    Google Scholar 

  14. Morabito, F.C., Labate, D., Bramanti, A., La Foresta, F., Morabito, G., Palamara, I., Szu, H.H.: Enhanced compressibility of eeg signal in alzheimer’s disease patients. IEEE Sensors Journal 13(9), 3255–3262 (2013)

    Article  Google Scholar 

  15. Morabito, F.C., Labate, D., La Foresta, F., Bramanti, A., Morabito, G., Palamara, I.: Multivariate multi-scale permutation entropy for complexity analysis of alzheimer’s disease eeg. Entropy 14(7), 1186–1202 (2012)

    Article MATH  Google Scholar 

  16. Ortiz, A., Górriz, J.M., Ramírez, J., Martínez-Murcia, F.J.: Lvq-svm based cad tool applied to structural mri for the diagnosis of the alzheimer’s disease. Pattern Recognition Letters 34(14), 1725–1733 (2013)

    Article  Google Scholar 

  17. Platel, M.D., Schliebs, S., Kasabov, N.: Quantum-inspired evolutionary algorithm: a multimodel eda. IEEE Transactions on Evolutionary Computation 13(6), 1218–1232 (2009)

    Article  Google Scholar 

  18. Pritchard, C., Mayers, A., Baldwin, D.: Changing patterns of neurological mortality in the 10 major developed countries - 1979 - 2010. Public Health 127(4), 357–368 (2013)

    Article  Google Scholar 

  19. Rodriguez, G., Copello, F., Vitali, P., Perego, G., Nobili, F.: Eeg spectral profile to stage alzheimer’s disease. Clinical Neurophysiology 110, 1831–1837 (1999)

    Article  Google Scholar 

  20. Schliebs, S., Defoin-Platel, M., Worner, S., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models. Neural Networks 22(5), 623–632 (2009)

    Article  Google Scholar 

  21. Shu, H., Nan, B., Koeppe, R., et al.: Multiple testing for neuroimaging via hidden markov random field. arXiv preprint arXiv:1404.1371 (2014)

    Google Scholar 

  22. Song, Q., Kasabov, N.: Ecm - a novel on-line, evolving clustering method and its applications. In: Posner, M.I. (ed.) Foundations of Cognitive Science, pp. 631–682. The MIT Press (2001)

    Google Scholar 

  23. Song, S., Miller, K., Abbott, L.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3, 919–926 (2000)

    Article  Google Scholar 

  24. Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain. 3-dimensional proportional system: an approach to cerebral imaging. Thieme (1988)

    Google Scholar 

  25. Taylor, D., Scott, N., Kasabov, N., Capecci, E., Tu, E., Saywell, N., Chen, Y., Hu, J., Hou, Z.G.: Feasibility of neucube snn architecture for detecting motor execution and motor intention for use in bciapplications. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 3221–3225 (July 2014)

    Google Scholar 

  26. Thorpe, S., Gautrais, J.: Rank order coding. In: Computational Neuroscience, pp. 113–118. Springer (1998)

    Google Scholar 

  27. Tu, E., Kasabov, N., Othman, M., Li, Y., Worner, S., Yang, J., Jia, Z.: Neucube(st) for spatio-temporal data predictive modelling with a case study on ecological data. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 638–645 (July 2014)

    Google Scholar 

  28. Zhang, Y., Wang, S., Dong, Z.: Classification of alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Progress in Electromagnetics Research 144, 171–184 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand

    Elisa Capecci & Nikola Kasabov

  2. DICEAM - Mediterranea University of Reggio Calabria, Reggio Calabria, Italy

    Francesco Carlo Morabito, Maurizio Campolo, Nadia Mammone & Domenico Labate

Authors
  1. Elisa Capecci

    You can also search for this author inPubMed Google Scholar

  2. Francesco Carlo Morabito

    You can also search for this author inPubMed Google Scholar

  3. Maurizio Campolo

    You can also search for this author inPubMed Google Scholar

  4. Nadia Mammone

    You can also search for this author inPubMed Google Scholar

  5. Domenico Labate

    You can also search for this author inPubMed Google Scholar

  6. Nikola Kasabov

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toElisa Capecci.

Editor information

Editors and Affiliations

  1. Computer Science Department, University of Milano, Milano, Italy

    Simone Bassis

  2. Dipartimento di Psicologia & Vietri sul Mare (SA), Seconda Universitá di Napoli, International Institute for Advanced Scientific Studies (IIASS), Caserta, Italy

    Anna Esposito

  3. Department of Civil, Environmental, Energy, and Material Engineering, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy

    Francesco Carlo Morabito

Rights and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capecci, E., Morabito, F.C., Campolo, M., Mammone, N., Labate, D., Kasabov, N. (2015). A Feasibility Study of Using the NeuCube Spiking Neural Network Architecture for Modelling Alzheimer’s Disease EEG Data. In: Bassis, S., Esposito, A., Morabito, F. (eds) Advances in Neural Networks: Computational and Theoretical Issues. Smart Innovation, Systems and Technologies, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-18164-6_16

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp