Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

An Enhanced Particle Swarm Optimisation Algorithm Combined with Neural Networks to Decrease Computational Time

  • Conference paper
  • First Online:

Abstract

This paper proposes to reduce the computational time of an algorithm based on the combination of the Evolutionary Game Theory (EGT) and the Particle Swarm Optimisation (PSO), named C-EGPSO, by using Neural Networks (NN) in order to lighten the computation of the identified heavy part of the C-EGPSO. This computationally burdensome task is the resolution of the EGT part that consists in solving iteratively a differential equation in order to optimally adapt the direction search and the size step of the PSO at each iteration. Therefore, it is proposed to use NN to learn the solution of this differential equation according to the initial conditions in order to gain a precious time.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, USA, pp. 1942–1948 (1995)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: The 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, Orlando, USA, pp. 4104–4108, October 1997

    Google Scholar 

  3. Hu, W., Song, J., Li, W.: A new PSO scheduling simulation algorithm based on an intelligent compensation particle position rounding off. In: ICNC ’08 Proceedings of the 2008 Fourth International Conference on Natural Computation, vol. 1, Jinan, China, pp. 145–149, October 2008

    Google Scholar 

  4. Junker, U.: Air traffic flow management with heuristic repair. The Knowledge Engineering Review, vol. 0, pp. 1–24 (2004)

    Google Scholar 

  5. Shaa, D., H.H., L.: A multi-objective PSO for job-shop scheduling problems. Expert Systems with Applications, vol. 37, pp. 1065–1070 (2010)

    Google Scholar 

  6. Badamchizadeh, M., Madani, K.: Applying modified discrete particle swarm optimization algorithm and genetic algorithm for system identification. In: Computer and Automation Engineering (ICCAE), 2010, vol. 5, Singapore, Republic of Singapore, pp. 354–358, February 2010

    Google Scholar 

  7. Eberhart, R., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization. In: Proceedings of the 7th International Conference on Evolutionary Programming, San Diego, USA, pp. 611–616, March 1998

    Google Scholar 

  8. Liaoa, C., Tsengb, C., Luarnb, P.: A discrete version of particle swarm optimization for flowshop scheduling problems. Computers & Operations Research34, 3099–3111 (2007)

    Article  Google Scholar 

  9. Hassan, R., Cohanim, B., de Weck, O., Venter, G.: A comparison of particle swarm optimization and the genetic algorithm. Tech. rep., Massachusetts Institute of Technology, Cambridge, MA, 02139 (2004)

    Google Scholar 

  10. Clerc, M.: Standard particle swarm optimisation, Tech. rep., maurice.clerc@Writeme.com (2012)

    Google Scholar 

  11. Leboucher, C., Shin, H.-S., Siarry, P., Chelouah, R., Ménec, S.L., Tsourdos, A.: A Two-Step Optimisation Method for Dynamic Weapon Target Assignment Problem. Recent Advances on Meta-Heuristics and Their Application to Real Scenarios, InTech (2013)

    Google Scholar 

  12. Congress on Evolutionary Computation, Edinburgh, UK, September 2005

    Google Scholar 

  13. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Tech. rep., Technical Report, Nanyang Technological University, Singapore and KanGAL Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur) (2005)

    Google Scholar 

  14. Leboucher, C., Chelouah, R., Siarry, P., Ménec, S.L.: A swarm intelligence method combined to evolutionary game theory applied to resource allocation problem. In: International conference on swarm intelligence, Cergy, France, June 2011

    Google Scholar 

  15. Leboucher, C., Chelouah, R., Siarry, P., Le Ménec, S.: A swarm intelligence method combined to evolutionary game theory applied to the resources allocation problem. International Journal of Swarm Intelligence Research (IJSIR)3(2), 20–38 (2012)

    Article  Google Scholar 

  16. Mendes, R.: Population topologies and their influence in particle swarm performance. PhD thesis, University Minho (2004)

    Google Scholar 

  17. Clerc, M.: Back to random topology. Tech. rep., maurice.clerc@Writeme.com (2007)

    Google Scholar 

  18. Taylor, P., Jonker, L.: Evolutionary stable strategies and game dynamics. Mathematical Bioscience40, 145–156 (1978)

    Article MATH MathSciNet  Google Scholar 

  19. Cressman, R.: Evolutionary Dynamics and Extensive Form Games. MIT Press (2003)

    Google Scholar 

  20. Sandholm, W.: Population Games and Evolutionary Dynamics. MIT Press (2010)

    Google Scholar 

  21. Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization. Springer (2009)

    Google Scholar 

  22. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics5(4), 115–133 (1943)

    Article MATH MathSciNet  Google Scholar 

  23. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzman machines. Cognitive Sciences9, 147–169 (1985)

    Article  Google Scholar 

  24. Fausett, L.: Fundamentals of neural networks: Architectures, algorithms, and applications. Prentice Hall (1994)

    Google Scholar 

  25. Haykin, S.: Neural Networks: A comprehensive foundation. MacMillan College (1994)

    Google Scholar 

  26. Cichocki, A., Unbehauen, R.: Neural networks for optimization and signal processing. Wiley (1993)

    Google Scholar 

  27. Looi, C.-K.: Neural network methods in combinatorial optimization. Computational Operations Research19(3–4), 191–208 (1992)

    Article MATH  Google Scholar 

  28. Ansari, N., Hou, E.S.H., Yu, Y.: A new method to optimize the satellite broadcasting schedules using the mean field annealing of a Hopfield neural network. IEEE Transactions on Neural Networks6(2), 470–482 (1995)

    Article  Google Scholar 

  29. Lagerholm, M., Peterson, C., Soderberg, B.: Airline crew scheduling with Potts neurons. Neural Computation9, 1589–1599 (1997)

    Article  Google Scholar 

  30. Fang, L., Li, T.: Design of competition-based neural networks for combinatorial optimization. International Journal of Neural Systems1(3), 221–235 (1990)

    Article MathSciNet  Google Scholar 

  31. Hopfield, J., Tank, D.W.: Neural computation of decisions in optimization problems. Biological Cybernetics52(3), 141–152 (1985)

    MATH MathSciNet  Google Scholar 

  32. Levy, B.C., Adam, M.B.: Global optimization with stochastic neural networks. In: First International Conference on Neural networks for Optimization and signal processing, San Diego, USA, pp. 681–690 (1987)

    Google Scholar 

  33. Abe, S., Kawakami, J., Hirasawa, K.: Solving inequality constrained combinatorial optimization problems by the Hopfield neural networks. Neural Networks5, 663–670 (1992)

    Article  Google Scholar 

  34. MATLAB, Neural Networks Toolbox

    Google Scholar 

  35. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1769–1776 (2005)

    Google Scholar 

  36. Sinha, A., Tiwari, S., Deb, K.: A population-based, steady-state procedure for real-parameter optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 514–521 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. MBDA France, 1, avenue Réaumur, 92350, Le Plessis Robinson, France

    Cédric Leboucher & Stéphane Le Ménec

  2. Univ. de Paris-Est Créteil, Laboratoire Images, Signaux et Systèmes Intelligents, LiSSi (E.A. 3956), 122 rue Paul Armangot, 94400, Vitry sur Seine, France

    Patrick Siarry

  3. Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, United Kingdom

    Hyo-Sang Shin & Antonios Tsourdos

  4. EISTI, Avenue du Parc, 95000, Cergy, France

    Rachid Chelouah

Authors
  1. Cédric Leboucher

    You can also search for this author inPubMed Google Scholar

  2. Patrick Siarry

    You can also search for this author inPubMed Google Scholar

  3. Stéphane Le Ménec

    You can also search for this author inPubMed Google Scholar

  4. Hyo-Sang Shin

    You can also search for this author inPubMed Google Scholar

  5. Rachid Chelouah

    You can also search for this author inPubMed Google Scholar

  6. Antonios Tsourdos

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toCédric Leboucher.

Editor information

Editors and Affiliations

  1. Univ Paris-Est Créteil UPEC LISSI, Vitry Sur Seine, France

    Patrick Siarry

  2. Université de Haute Alsace LMIA-INRIA Grand Est, Mulhouse, France

    Lhassane Idoumghar

  3. Université de Haute-Alsace, LMIA, Mulhouse, France

    Julien Lepagnot

Rights and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Leboucher, C., Siarry, P., Le Ménec, S., Shin, HS., Chelouah, R., Tsourdos, A. (2014). An Enhanced Particle Swarm Optimisation Algorithm Combined with Neural Networks to Decrease Computational Time. In: Siarry, P., Idoumghar, L., Lepagnot, J. (eds) Swarm Intelligence Based Optimization. ICSIBO 2014. Lecture Notes in Computer Science(), vol 8472. Springer, Cham. https://doi.org/10.1007/978-3-319-12970-9_16

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp