Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Stretching the Life of Twitter Classifiers with Time-Stamped Semantic Graphs

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNISA,volume 8797))

Included in the following conference series:

Abstract

Social media has become an effective channel for communicating both trends and public opinion on current events. However the automatic topic classification of social media content pose various challenges. Topic classification is a common technique used for automatically capturing themes that emerge from social media streams. However, such techniques are sensitive to the evolution of topics when new event-dependent vocabularies start to emerge (e.g., Crimea becoming relevant to War_Conflict during the Ukraine crisis in 2014). Therefore, traditional supervised classification methods which rely on labelled data could rapidly become outdated. In this paper we propose a novel transfer learning approach to address the classification task of new data when the only available labelled data belong to a previous epoch. This approach relies on the incorporation of knowledge from DBpedia graphs. Our findings show promising results in understanding how features age, and how semantic features can support the evolution of topic classifiers.

Similar content being viewed by others

Keywords

References

  1. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: Proc. Conf. on EMNLP (2006)

    Google Scholar 

  2. Cano, E., He, Y., Liu, K., Zhao, J.: A weakly supervised bayesian model for violence detection in social media. In: Proc. 6th IJCNLP 2013 (2013)

    Google Scholar 

  3. Cano, A.E., Varga, A., Rowe, M., Ciravegna, F., He, Y.: Harnessing linked knowledge source for topic classification in social media. In: Proc. 24th ACM Conf. on Hypertext and Social Media, Paris, France (2013)

    Google Scholar 

  4. Caruana, R.: Multitask learning.  28(1), 41–75 (1997)

    Google Scholar 

  5. Chen, G.H., Nikolov, S., Shah, D.: A latent source model for nonparametric time series classification. In: Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods. Cambridge University Press (2000)

    Google Scholar 

  7. Daumé, I.: Frustratingly easy domain adaptation. In: Proceedings of the 2007 ACL (2007)

    Google Scholar 

  8. Diao, Q., Jiang, J., Zhu, F., Lim, E.-P.: Finding bursty topics from microblogs. In: Proc. 50th Annual Meeting of the ACL, Jeju Island, Korea (2012)

    Google Scholar 

  9. Dries, A., Rückert, U.: Adaptive concept drift detection. Stat. Anal. Data Min. 2(56) (2009)

    Google Scholar 

  10. Genc, Y., Sakamoto, Y., Nickerson, J.V.: Discovering context: Classifying tweets through a semantic transform based on wikipedia. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) FAC 2011. LNCS, vol. 6780, pp. 484–492. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. He, Y.: Incorporating sentiment prior knowledge for weakly supervised sentiment analysis. ACM Transactions on Asian Language Information Processing 11(2), 4:1–4:19 (2012)

    Google Scholar 

  12. He, Y., Lin, C., Gao, W., Wong, K.-F.: Tracking sentiment and topic dynamics from social media. In: Proc. of the Sixth Int. Conf. on Weblogs and Social Media, Dublin, Ireland (2012)

    Google Scholar 

  13. Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval: Development and comparative experiments. Inf. Process. Manage. 36(6), 779–808 (2000)

    Article  Google Scholar 

  14. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proc. 14th IJCAI, vol. 2 (1995)

    Google Scholar 

  15. Lv, W., Xu, W., Guo, J.: Transfer learning in classification based on semantic analysis. In: 2nd Int. Conf. on ICCSNT (2012)

    Google Scholar 

  16. Milikic, N., Jovanovic, J., Stankovic, M.: Discovering the dynamics of terms semantic relatedness through twitter. In: Proceedings, 1st Workshop on #MSM 2011 (2011)

    Google Scholar 

  17. Muñoz García, O., García-Silva, A., Corcho, O., de la Higuera Hernández, M., Navarro, C.: Identifying Topics in Social Media Posts using DBpedia. In: Proc. of the NEM Summit (2011)

    Google Scholar 

  18. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. on Knowl. and Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  19. Phan, X.-H., Nguyen, L.-M., Horiguchi, S.: Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In: Proc. 17th Int. Conf. on World Wide Web, WWW 2008, Beijing, China (2008)

    Google Scholar 

  20. Porter, M.: An algorithm for suffix stripping. Program 14(3) (1980)

    Google Scholar 

  21. Saif, H., Fernandez, M., He, Y., Alani, H.: Senticircles for contextual and conceptual semantic sentiment analysis of twitter. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 83–98. Springer, Heidelberg (2014)

    Google Scholar 

  22. Salzberg, S.L., Fayyad, U.: On comparing classifiers: Pitfalls to avoid and a recommended approach. In: Data Mining and Knowledge Discovery, pp. 317–328 (1997)

    Google Scholar 

  23. Song, Y., Wang, H., Wang, Z., Li, H., Chen, W.: Short text conceptualization using a probabilistic knowledgebase. In: Int. Joint. Conf. of AI (IJCAI). IJCAI/AAAI (2011)

    Google Scholar 

  24. Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short text classification in twitter to improve information filtering. In: Proc. of the Int. ACM SIGIR (2010)

    Google Scholar 

  25. Thrun, S.: Is learning the n-th thing any easier than learning the first? In: Advances in Neural Information Processing Systems (1996)

    Google Scholar 

  26. Varga, A., Cano, A., Rowe, M., Ciravegna, F., He, Y.: Linked knowledge sources for topic classification of microposts: A semantic graph-based approach. In: JWS: Science, Services and Agents on the WWW (2014)

    Google Scholar 

  27. Zhao, X., Shu, B., Jiang, J., Song, Y., Yan, H., Li, X.: Identifying event-related bursts via social media activities. In: Proc. of the Joint Conference on EMNLP, Jeju Island, Korea (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Knowledge Media Institute, Open University, UK

    Amparo Elizabeth Cano & Harith Alani

  2. School of Engineering and Applied Science, Aston University, UK

    Yulan He

Authors
  1. Amparo Elizabeth Cano

    You can also search for this author inPubMed Google Scholar

  2. Yulan He

    You can also search for this author inPubMed Google Scholar

  3. Harith Alani

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Yahoo Labs, Diagonal 177, 08018, Barcelona, Spain

    Peter Mika

  2. Stanford University, 1265 Welch Road, 94305, Stanford, CA, USA

    Tania Tudorache

  3. DDIS, University of Zurich, Zurich, Switzerland

    Abraham Bernstein

  4. IBM Research, Yorktown Heights, NY, USA

    Chris Welty

  5. Information Sciences Institute and Department of Computer Science, University of Southern California, Los Angeles, CA, USA

    Craig Knoblock

  6. Google, USA

    Denny Vrandečić  & Natasha Noy  & 

  7. VU University Amsterdam, The Netherlands

    Paul Groth

  8. Department of Geography, University of California, Santa Barbara, CA, USA

    Krzysztof Janowicz

  9. School of Computer Science, The University of Manchester, Manchester, UK

    Carole Goble

Rights and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cano, A.E., He, Y., Alani, H. (2014). Stretching the Life of Twitter Classifiers with Time-Stamped Semantic Graphs. In: Mika, P.,et al. The Semantic Web – ISWC 2014. ISWC 2014. Lecture Notes in Computer Science, vol 8797. Springer, Cham. https://doi.org/10.1007/978-3-319-11915-1_22

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp