Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

OntoFast: Construct Ontology Rapidly

  • Conference paper

Abstract

Ontology construction is a time consuming and labor intensive task. It may take many months to construct an ontology as according to standard practices each concept must have synonyms, domain specific definition, unique identifier and references. Current practices of ontology construction require manual data input to feed this data via programs such as Protégé etc. We designed a small application that speeds up the development of new ontologies. It provides an easy to use and convenient interface that allows to theoretically build an ontology within few days. The output of our program can be easily opened and then used into a standard ontology editor like Protégé. Availability: The software is freely available visiting this link: http://www. francescopappalardo.net/ontofast.zip.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cimiano, P., Völker, J.: Text2onto - a framework for ontology learning and data-driven change discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Web-scale information extraction in knowitall (preliminary results). In: WWW 2004: Proceedings of the 13th International Conference on World Wide Web, pp. 100–110. ACM, New York (2004)

    Google Scholar 

  3. Faure, D., Nédellec, C.: Knowledge acquisition of predicate argument structures from technical texts using machine learning: The system ASIUM. In: Fensel, D., Studer, R. (eds.) EKAW 1999. LNCS (LNAI), vol. 1621, pp. 329–334. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993)

    Article  Google Scholar 

  5. Hahn, U., Romacker, M., Schulz, S.: medsyndikate—a natural language system for the extraction of medical information from findings reports. International Journal of Medical Informatics 67(1-3), 63–74 (2002)

    Article  Google Scholar 

  6. Khondoker, M.R., Mueller, P.: Comparing ontology development tools based on an online survey. In: Proceedings of the World Congress on Engineering (WCE 2010), London, U.K, vol. I (2010)

    Google Scholar 

  7. Rajput, A.M., Gurulingappa, H.: Semi-automatic approach for ontology enrichment using umls. Procedia Computer Science 23, 78–83 (2013)

    Article  Google Scholar 

  8. Saric, J., Jensen, L.J., Ouzounova, R., Rojas, I., Bork, P.: Extraction of regulatory gene/protein networks from medline. Bioinformatics 22, 645–650 (2006)

    Article  Google Scholar 

  9. Velardi, P., Navigli, R., Cucchiarelli, A., Neri, F.: Evaluation of OntoLearn, a methodology for automatic population of domain ontologies. In: Buitelaar, P., Cimiano, P., Magnini, B. (eds.) Ontology Learning from Text: Methods, Applications and Evaluation. IOS Press (2006)

    Google Scholar 

  10. Yamaguchi, T.: Acquiring conceptual relationships from domain-specific texts. In: Maedche, A., Staab, S., Nedellec, C., Hovy, E.H. (eds.) Workshop on Ontology Learning. CEUR Workshop Proceedings, vol. 38. CEUR-WS.org (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Bonn-Aachen International Center for Information Technology [B-IT], University of Bonn, Germany

    Abdul-Mateen Rajput

  2. Department of Mathematics and Computer Science, University of Catania, Italy

    Marzio Pennisi & Santo Motta

  3. Department of Drug Sciences, University of Catania, Italy

    Francesco Pappalardo

Authors
  1. Abdul-Mateen Rajput

    You can also search for this author inPubMed Google Scholar

  2. Marzio Pennisi

    You can also search for this author inPubMed Google Scholar

  3. Santo Motta

    You can also search for this author inPubMed Google Scholar

  4. Francesco Pappalardo

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. University of Ulm, Institute of Artificial Intelligence, 89069, Ulm, Germany

    Pavel Klinov

  2. Mechanics and Optics, Saint Petersburg National Research University of Information Technologies, Saint-Petersburg, Russia

    Dmitry Mouromtsev

Rights and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rajput, AM., Pennisi, M., Motta, S., Pappalardo, F. (2014). OntoFast: Construct Ontology Rapidly. In: Klinov, P., Mouromtsev, D. (eds) Knowledge Engineering and the Semantic Web. KESW 2014. Communications in Computer and Information Science, vol 468. Springer, Cham. https://doi.org/10.1007/978-3-319-11716-4_21

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp