Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Generalized Connectivity Constraints for Spatio-temporal 3D Reconstruction

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 8692))

Included in the following conference series:

  • 24kAccesses

Abstract

This paper introduces connectivity preserving constraints into spatio-temporal multi-view reconstruction. We efficiently model connectivity constraints by precomputing a geodesic shortest path tree on the occupancy likelihood. Connectivity of the final occupancy labeling is ensured with a set of linear constraints on the labeling function. In order to generalize the connectivity constraints from objects with genus 0 to an arbitrary genus, we detect loops by analyzing the visual hull of the scene. A modification of the constraints ensures connectivity in the presence of loops. The proposed efficient implementation adds little runtime and memory overhead to the reconstruction method. Several experiments show significant improvement over state-of-the-art methods and validate the practical use of this approach in scenes with fine structured details.

Similar content being viewed by others

Keywords

References

  1. Aganj, E., Pons, J.P., Ségonne, F., Keriven, R.: Spatio-temporal shape from silhouette using four-dimensional delaunay meshing. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Bleyer, M., Rother, C., Kohli, P., Scharstein, D., Sinha, S.: Object stereojoint stereo matching and object segmentation. In: CVPR, pp. 3081–3088. IEEE (2011)

    Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE TPAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  5. Chen, C., Freedman, D., Lampert, C.H.: Enforcing topological constraints in random field image segmentation. In: CVPR, pp. 2089–2096 (2011)

    Google Scholar 

  6. Cremers, D., Kolev, K.: Multiview stereo and silhouette consistency via convex functionals over convex domains. IEEE TPAMI 33, 1161–1174 (2011)

    Article  Google Scholar 

  7. Dey, T.K., Fan, F., Wang, Y.: An efficient computation of handle and tunnel loops via reeb graphs. ACM Trans. Graph. 32(4), 32 (2013)

    Article  Google Scholar 

  8. Dey, T.K., Li, K., Sun, J., Cohen-Steiner, D.: Computing geometry-aware handle and tunnel loops in 3d models. ACM Trans. Graph. 27(3) (2008)

    Google Scholar 

  9. Esteban, C.H., Schmitt, F.: Silhouette and stereo fusion for 3d object modeling. CVIU 96(3), 367–392 (2004)

    Google Scholar 

  10. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE TPAMI 32(8), 1362–1376 (2010),http://dx.doi.org/10.1109/TPAMI.2009.161

    Article  Google Scholar 

  11. Goldluecke, B., Ihrke, I., Linz, C., Magnor, M.: Weighted minimal hypersurface reconstruction. IEEE TPAMI 29(7), 1194–1208 (2007)

    Article  Google Scholar 

  12. Goldluecke, B., Magnor, M.: Space-time isosurface evolution for temporally coherent 3D reconstruction. In: CVPR, vol. I, pp. 350–355 (July 2004)

    Google Scholar 

  13. Guillemaut, J.Y., Hilton, A.: Space-time joint multi-layer segmentation and depth estimation. In: 3DIMPVT, pp. 440–447 (2012)

    Google Scholar 

  14. Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: CVPR, pp. 3129–3136. IEEE (2010)

    Google Scholar 

  15. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE TPAMI 25(6), 755–768 (2003)

    Article  Google Scholar 

  16. Institut national de recherche en informatique et en automatique (INRIA) Rhône Alpes: 4d repository,http://4drepository.inrialpes.fr/

  17. Jancosek, M., Pajdla, T.: Multi-view reconstruction preserving weakly-supported surfaces. In: CVPR, pp. 3121–3128 (2011)

    Google Scholar 

  18. Kazhdan, M.M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Symposium on Geometry Processing, pp. 61–70 (2006)

    Google Scholar 

  19. Kolev, K., Klodt, M., Brox, T., Cremers, D.: Continuous global optimization in multiview 3d reconstruction. IJCV 84(1), 80–96 (2009)

    Article  Google Scholar 

  20. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21, 163–169 (1987)

    Article  Google Scholar 

  21. Nowozin, S., Lampert, C.H.: Global connectivity potentials for random field models. In: CVPR, pp. 818–825. IEEE (2009)

    Google Scholar 

  22. Oswald, M.R., Cremers, D.: A convex relaxation approach to space time multi-view 3d reconstruction. In: ICCV - Workshop on Dynamic Shape Capture and Analysis (4DMOD) (2013)

    Google Scholar 

  23. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: ICCV, Washington, DC, USA, pp. 1762–1769 (2011)

    Google Scholar 

  24. Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE Computer Graphics and Applications 27(3), 21–31 (2007)

    Article  Google Scholar 

  25. Stühmer, J., Schröder, P., Cremers, D.: Tree shape priors with connectivity constraints using convex relaxation on general graphs. In: ICCV, Sydney, Australia (December 2013)

    Google Scholar 

  26. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with connectivity priors. In: CVPR (2008)

    Google Scholar 

  27. Zeng, Y., Samaras, D., Chen, W., Peng, Q.: Topology cuts: A novel min-cut/max-flow algorithm for topology preserving segmentation in n–d images. Computer Vision and Image Understanding 112(1), 81–90 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, Technische Universität München, Boltzmannstr. 3, 85748, Garching, Germany

    Martin Ralf Oswald, Jan Stühmer & Daniel Cremers

Authors
  1. Martin Ralf Oswald

    You can also search for this author inPubMed Google Scholar

  2. Jan Stühmer

    You can also search for this author inPubMed Google Scholar

  3. Daniel Cremers

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, University of Toronto, 6 King’s College Road, M5H 3S5, Toronto, ON, Canada

    David Fleet

  2. Faculty of Electrical Engineering, Department of Cybernetics, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic

    Tomas Pajdla

  3. Max-Planck-Institut für Informatik, Campus E1 4, 66123, Saarbrücken, Germany

    Bernt Schiele

  4. KU Leuven, ESAT - PSI, iMinds, Kasteelpark Arenberg 10, Bus 2441, 3001, Leuven, Belgium

    Tinne Tuytelaars

Rights and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Oswald, M.R., Stühmer, J., Cremers, D. (2014). Generalized Connectivity Constraints for Spatio-temporal 3D Reconstruction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8692. Springer, Cham. https://doi.org/10.1007/978-3-319-10593-2_3

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp