Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 8691))
Included in the following conference series:
21kAccesses
273Citations
Abstract
Although depth information plays an important role in the human vision system, it is not yet well-explored in existing visual saliency computational models. In this work, we first introduce a large scale RGBD image dataset to address the problem of data deficiency in current research of RGBD salient object detection. To make sure that most existing RGB saliency models can still be adequate in RGBD scenarios, we continue to provide a simple fusion framework that combines existing RGB-produced saliency with new depth-induced saliency, the former one is estimated from existing RGB models while the latter one is based on the proposed multi-contextual contrast model. Moreover, a specialized multi-stage RGBD model is also proposed which takes account of both depth and appearance cues derived from low-level feature contrast, mid-level region grouping and high-level priors enhancement. Extensive experiments show the effectiveness and superiority of our model which can accurately locate the salient objects from RGBD images, and also assign consistent saliency values for the target objects.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Microsoft Corp. Redmond WA. Kinect for Xbox 360
Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11), 2274–2282 (2012)
Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR, pp. 73–80 (2010)
Borji, A., Itti, L.: Exploiting local and global patch rarities for saliency detection. In: CVPR, pp. 478–485 (2012)
Borji, A., Sihite, D.N., Itti, L.: Salient object detection: A benchmark. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 414–429. Springer, Heidelberg (2012)
Bruce, N.D.B., Tsotsos, J.K.: Saliency based on information maximization. In: NIPS (2005)
Carreira, J., Sminchisescu, C.: Cpmc: Automatic object segmentation using constrained parametric min-cuts. PAMI 34(7), 1312–1328 (2012)
Chang, K.Y., Liu, T.L., Chen, H.T., Lai, S.H.: Fusing generic objectness and visual saliency for salient object detection. In: ICCV, pp. 914–921 (2011)
Cheng, M., Zhang, G., Mitra, N.J., Huang, X., Hu, S.: Global contrast based salient region detection. In: CVPR, pp. 409–416 (2011)
Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: ICCV, pp. 1–8 (2013)
Ciptadi, A., Hermans, T., Rehg, J.M.: An in Depth View of Saliency. In: BMVC, pp. 1–11 (2013)
Desingh, K., Krishna, K.M., Jawahar, C.V., Rajan, D.: Depth really matters: Improving visual salient region detection with depth. In: BMVC, pp. 1–11 (2013)
Goferman, S., Manor, L.Z., Tal, A.: Context-aware saliency detection. In: CVPR, pp. 1915–1926 (2010)
Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS, pp. 545–552 (2006)
Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using rgb-d cameras. In: RoboCup, pp. 306–317 (2011)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20(11), 1254–1259 (1998)
Jia, Y., Han, M.: Category-independent object-level saliency detection. In: ICCV, pp. 1761–1768 (2013)
Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: ICCV, pp. 1665–1672 (2013)
Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: BMVC, pp. 1–12 (2011)
Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: A discriminative regional feature integration approach. In: CVPR, pp. 1–8 (2013)
Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: Uniqueness, focusness and objectness. In: ICCV, pp. 1976–1983 (2013)
Judd, T., Ehinger, K.A., Durand, F., Torralba, A.: Learning to predict where humans look. In: ICCV, pp. 2106–2113 (2009)
Koch, C., Ullman, S.: Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology 4(4), 219–227 (1985)
Lang, C., Nguyen, T.V., Katti, H., Yadati, K., Kankanhalli, M., Yan, S.: Depth matters: Influence of depth cues on visual saliency. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 101–115. Springer, Heidelberg (2012)
Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004)
Li, X., Li, Y., Shen, C., Dick, A.R., van den Hengel, A.: Contextual hypergraph modeling for salient object detection. In: ICCV, pp. 3328–3335 (2013)
Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and sparse reconstruction. In: ICCV, pp. 2976–2983 (2013)
Liu, T., Sun, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: CVPR, pp. 1–8 (2007)
Manen, S., Guillaumin, M., Gool, L.J.V.: Prime object proposals with randomized prim’s algorithm. In: ICCV, pp. 2536–2543 (2013)
Marchesotti, L., Cifarelli, C., Csurka, G.: A framework for visual saliency detection with applications to image thumbnailing. In: ICCV, pp. 2232–2239 (2009)
Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: CVPR, pp. 1139–1146 (2013)
Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In: CVPR, pp. 454–461 (2012)
Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast based filtering for salient region detection. In: CVPR, pp. 733–740 (2012)
Prim, R.: Shortest connection networks and some generalizations. Bell System Tech. J., 1389–1401 (1957)
Rutishauser, U., Walther, D., Koch, C., Perona, P.: Is bottom-up attention useful for object recognition? In: CVPR, pp. 37–44 (2004)
Scharfenberger, C., Wong, A., Fergani, K., Zelek, J.S., Clausi, D.A.: Statistical textural distinctiveness for salient region detection in natural images. In: CVPR, pp. 979–986 (2013)
Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley (1992)
Sharma, G., Jurie, F., Schmid, C.: Discriminative spatial saliency for image classification. In: CVPR, pp. 3506–3513 (2012)
Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: CVPR, pp. 2296–2303 (2012)
Wang, P., Wang, J., Zeng, G., Feng, J., Zha, H., Li, S.: Salient object detection for searched web images via global saliency. In: CVPR, pp. 1–8 (2012)
Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012)
Wolfe, J.M., Horowitz, T.S.: Opinion: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5(6), 495–501 (2004)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR, pp. 1155–1162 (2013)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: CVPR, pp. 3166–3173 (2013)
Author information
Authors and Affiliations
Institute of Automation, Chinese Academy of Sciences, China
Houwen Peng, Bing Li, Weihua Xiong & Weiming Hu
Department of Cognitive Science, Xiamen University, China
Rongrong Ji
- Houwen Peng
You can also search for this author inPubMed Google Scholar
- Bing Li
You can also search for this author inPubMed Google Scholar
- Weihua Xiong
You can also search for this author inPubMed Google Scholar
- Weiming Hu
You can also search for this author inPubMed Google Scholar
- Rongrong Ji
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Department of Computer Science, University of Toront, 6 King’s College Road, M5H 3S5, Toronto, ON, Canada
David Fleet
Faculty of Electrical Engineering, Department of Cybernetics, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
Tomas Pajdla
Max-Planck-Institut für Informatik, Campus E1 4, 66123, Saarbrücken, Germany
Bernt Schiele
ESAT - PSI, iMinds, KU Leuven, Kasteelpark Arenberg 10, Bus 2441, 3001, Leuven, Belgium
Tinne Tuytelaars
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Peng, H., Li, B., Xiong, W., Hu, W., Ji, R. (2014). RGBD Salient Object Detection: A Benchmark and Algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8691. Springer, Cham. https://doi.org/10.1007/978-3-319-10578-9_7
Download citation
Publisher Name:Springer, Cham
Print ISBN:978-3-319-10577-2
Online ISBN:978-3-319-10578-9
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative