Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

RGBD Salient Object Detection: A Benchmark and Algorithms

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 8691))

Included in the following conference series:

Abstract

Although depth information plays an important role in the human vision system, it is not yet well-explored in existing visual saliency computational models. In this work, we first introduce a large scale RGBD image dataset to address the problem of data deficiency in current research of RGBD salient object detection. To make sure that most existing RGB saliency models can still be adequate in RGBD scenarios, we continue to provide a simple fusion framework that combines existing RGB-produced saliency with new depth-induced saliency, the former one is estimated from existing RGB models while the latter one is based on the proposed multi-contextual contrast model. Moreover, a specialized multi-stage RGBD model is also proposed which takes account of both depth and appearance cues derived from low-level feature contrast, mid-level region grouping and high-level priors enhancement. Extensive experiments show the effectiveness and superiority of our model which can accurately locate the salient objects from RGBD images, and also assign consistent saliency values for the target objects.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Microsoft Corp. Redmond WA. Kinect for Xbox 360

    Google Scholar 

  2. Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)

    Google Scholar 

  3. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  4. Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR, pp. 73–80 (2010)

    Google Scholar 

  5. Borji, A., Itti, L.: Exploiting local and global patch rarities for saliency detection. In: CVPR, pp. 478–485 (2012)

    Google Scholar 

  6. Borji, A., Sihite, D.N., Itti, L.: Salient object detection: A benchmark. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 414–429. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Bruce, N.D.B., Tsotsos, J.K.: Saliency based on information maximization. In: NIPS (2005)

    Google Scholar 

  8. Carreira, J., Sminchisescu, C.: Cpmc: Automatic object segmentation using constrained parametric min-cuts. PAMI 34(7), 1312–1328 (2012)

    Article  Google Scholar 

  9. Chang, K.Y., Liu, T.L., Chen, H.T., Lai, S.H.: Fusing generic objectness and visual saliency for salient object detection. In: ICCV, pp. 914–921 (2011)

    Google Scholar 

  10. Cheng, M., Zhang, G., Mitra, N.J., Huang, X., Hu, S.: Global contrast based salient region detection. In: CVPR, pp. 409–416 (2011)

    Google Scholar 

  11. Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: ICCV, pp. 1–8 (2013)

    Google Scholar 

  12. Ciptadi, A., Hermans, T., Rehg, J.M.: An in Depth View of Saliency. In: BMVC, pp. 1–11 (2013)

    Google Scholar 

  13. Desingh, K., Krishna, K.M., Jawahar, C.V., Rajan, D.: Depth really matters: Improving visual salient region detection with depth. In: BMVC, pp. 1–11 (2013)

    Google Scholar 

  14. Goferman, S., Manor, L.Z., Tal, A.: Context-aware saliency detection. In: CVPR, pp. 1915–1926 (2010)

    Google Scholar 

  15. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS, pp. 545–552 (2006)

    Google Scholar 

  16. Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-time plane segmentation using rgb-d cameras. In: RoboCup, pp. 306–317 (2011)

    Google Scholar 

  17. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  18. Jia, Y., Han, M.: Category-independent object-level saliency detection. In: ICCV, pp. 1761–1768 (2013)

    Google Scholar 

  19. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: ICCV, pp. 1665–1672 (2013)

    Google Scholar 

  20. Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: BMVC, pp. 1–12 (2011)

    Google Scholar 

  21. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: A discriminative regional feature integration approach. In: CVPR, pp. 1–8 (2013)

    Google Scholar 

  22. Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: Uniqueness, focusness and objectness. In: ICCV, pp. 1976–1983 (2013)

    Google Scholar 

  23. Judd, T., Ehinger, K.A., Durand, F., Torralba, A.: Learning to predict where humans look. In: ICCV, pp. 2106–2113 (2009)

    Google Scholar 

  24. Koch, C., Ullman, S.: Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology 4(4), 219–227 (1985)

    Google Scholar 

  25. Lang, C., Nguyen, T.V., Katti, H., Yadati, K., Kankanhalli, M., Yan, S.: Depth matters: Influence of depth cues on visual saliency. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 101–115. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004)

    Article  Google Scholar 

  27. Li, X., Li, Y., Shen, C., Dick, A.R., van den Hengel, A.: Contextual hypergraph modeling for salient object detection. In: ICCV, pp. 3328–3335 (2013)

    Google Scholar 

  28. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and sparse reconstruction. In: ICCV, pp. 2976–2983 (2013)

    Google Scholar 

  29. Liu, T., Sun, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  30. Manen, S., Guillaumin, M., Gool, L.J.V.: Prime object proposals with randomized prim’s algorithm. In: ICCV, pp. 2536–2543 (2013)

    Google Scholar 

  31. Marchesotti, L., Cifarelli, C., Csurka, G.: A framework for visual saliency detection with applications to image thumbnailing. In: ICCV, pp. 2232–2239 (2009)

    Google Scholar 

  32. Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: CVPR, pp. 1139–1146 (2013)

    Google Scholar 

  33. Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In: CVPR, pp. 454–461 (2012)

    Google Scholar 

  34. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast based filtering for salient region detection. In: CVPR, pp. 733–740 (2012)

    Google Scholar 

  35. Prim, R.: Shortest connection networks and some generalizations. Bell System Tech. J., 1389–1401 (1957)

    Google Scholar 

  36. Rutishauser, U., Walther, D., Koch, C., Perona, P.: Is bottom-up attention useful for object recognition? In: CVPR, pp. 37–44 (2004)

    Google Scholar 

  37. Scharfenberger, C., Wong, A., Fergani, K., Zelek, J.S., Clausi, D.A.: Statistical textural distinctiveness for salient region detection in natural images. In: CVPR, pp. 979–986 (2013)

    Google Scholar 

  38. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley (1992)

    Google Scholar 

  39. Sharma, G., Jurie, F., Schmid, C.: Discriminative spatial saliency for image classification. In: CVPR, pp. 3506–3513 (2012)

    Google Scholar 

  40. Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: CVPR, pp. 2296–2303 (2012)

    Google Scholar 

  41. Wang, P., Wang, J., Zeng, G., Feng, J., Zha, H., Li, S.: Salient object detection for searched web images via global saliency. In: CVPR, pp. 1–8 (2012)

    Google Scholar 

  42. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  43. Wolfe, J.M., Horowitz, T.S.: Opinion: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5(6), 495–501 (2004)

    Google Scholar 

  44. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR, pp. 1155–1162 (2013)

    Google Scholar 

  45. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: CVPR, pp. 3166–3173 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Automation, Chinese Academy of Sciences, China

    Houwen Peng, Bing Li, Weihua Xiong & Weiming Hu

  2. Department of Cognitive Science, Xiamen University, China

    Rongrong Ji

Authors
  1. Houwen Peng

    You can also search for this author inPubMed Google Scholar

  2. Bing Li

    You can also search for this author inPubMed Google Scholar

  3. Weihua Xiong

    You can also search for this author inPubMed Google Scholar

  4. Weiming Hu

    You can also search for this author inPubMed Google Scholar

  5. Rongrong Ji

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, University of Toront, 6 King’s College Road, M5H 3S5, Toronto, ON, Canada

    David Fleet

  2. Faculty of Electrical Engineering, Department of Cybernetics, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic

    Tomas Pajdla

  3. Max-Planck-Institut für Informatik, Campus E1 4, 66123, Saarbrücken, Germany

    Bernt Schiele

  4. ESAT - PSI, iMinds, KU Leuven, Kasteelpark Arenberg 10, Bus 2441, 3001, Leuven, Belgium

    Tinne Tuytelaars

Rights and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Peng, H., Li, B., Xiong, W., Hu, W., Ji, R. (2014). RGBD Salient Object Detection: A Benchmark and Algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8691. Springer, Cham. https://doi.org/10.1007/978-3-319-10578-9_7

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp