Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Contour Completion Model for Augmenting Surface Reconstructions

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 8691))

Included in the following conference series:

Abstract

The availability of commodity depth sensors such as Kinect has enabled development of methods which can densely reconstruct arbitrary scenes. While the results of these methods are accurate and visually appealing, they are quite often incomplete. This is either due to the fact that only part of the space was visible during the data capture process or due to the surfaces being occluded by other objects in the scene. In this paper, we address the problem of completing and refining such reconstructions. We propose a method for scene completion that can infer the layout of the complete room and the full extent of partially occluded objects. We propose a new probabilistic model, Contour Completion Random Fields, that allows us to complete the boundaries of occluded surfaces. We evaluate our method on synthetic and real world reconstructions of 3D scenes and show that it quantitatively and qualitatively outperforms standard methods. We created a large dataset of partial and complete reconstructions which we will make available to the community as a benchmark for the scene completion task. Finally, we demonstrate the practical utility of our algorithm via an augmented-reality application where objects interact with the completed reconstructions inferred by our method.

Similar content being viewed by others

Keywords

References

  1. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: Rgb-d mapping: Using depth cameras for dense 3d modeling of indoor environments. In: ISER, vol. 20, pp. 22–25 (2010)

    Google Scholar 

  2. Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping and tracking. In: ISMAR (2011)

    Google Scholar 

  3. Qualcomm: Vuforia. Website (2011),https://www.vuforia.com/

  4. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: CGI, pp. 303–312 (1996)

    Google Scholar 

  5. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (1987)

    Google Scholar 

  6. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing building interiors from images. In: ICCV (2009)

    Google Scholar 

  7. Furukawa, Y., Curless, B., Seitz, S., Szeliski, R.: Manhattan-world stereo. In: CVPR (2009)

    Google Scholar 

  8. Salas-Moreno, R.F., Newcombe, R.A., Strasdat, H., Kelly, P.H., Davison, A.J.: Slam++: Simultaneous localisation and mapping at the level of objects. In: CVPR (June 2013)

    Google Scholar 

  9. Barinova, O., Lempitsky, V., Tretiak, E., Kohli, P.: Geometric image parsing in man-made environments. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 57–70. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Hoiem, D., Hedau, V., Forsyth, D.: Recovering free space of indoor scenes from a single image (2012)

    Google Scholar 

  11. Guo, R., Hoiem, D.: Beyond the line of sight: Labeling the underlying surfaces. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 761–774. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Guo, R., Hoiem, D.: Support surface prediction in indoor scenes. In: ICCV (2013)

    Google Scholar 

  13. Kim, Y.M., Mitra, N.J., Yan, D.M., Guibas, L.: Acquiring 3d indoor environments with variability and repetition. ACM Transactions on Graphics 31(6) (2012)

    Google Scholar 

  14. Soo Kim, B., Kohli, P., Saverese, S.: 3d scene understanding by voxel-crf. In: ICCV (2013)

    Google Scholar 

  15. Zheng, B., Zhao, Y., Yu, J.C., Ikeuchi, K., Zhu, S.C.: Beyond point clouds: Scene understanding by reasoning geometry and physics. In: CVPR (2013)

    Google Scholar 

  16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions–I. Mathematical Programming 14(1), 265–294 (1978)

    Article MATH MathSciNet  Google Scholar 

  17. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Communications of the ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  18. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Jegelka, S., Bilmes, J.: Submodularity beyond submodular energies: Coupling edges in graph cuts. In: CVPR (2011)

    Google Scholar 

  20. Kohli, P., Osokin, A., Jegelka, S.: A principled deep random field model for image segmentation. In: CVPR (2013)

    Google Scholar 

  21. Kohli, P., Torr, P.H., et al.: Robust higher order potentials for enforcing label consistency. IJCV 82(3) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Courant Institute, New York University, USA

    Nathan Silberman

  2. Microsoft Research, USA

    Lior Shapira & Ran Gal

  3. Microsoft Research, Cambridge, UK

    Pushmeet Kohli

Authors
  1. Nathan Silberman

    You can also search for this author inPubMed Google Scholar

  2. Lior Shapira

    You can also search for this author inPubMed Google Scholar

  3. Ran Gal

    You can also search for this author inPubMed Google Scholar

  4. Pushmeet Kohli

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, University of Toront, 6 King’s College Road, M5H 3S5, Toronto, ON, Canada

    David Fleet

  2. Faculty of Electrical Engineering, Department of Cybernetics, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic

    Tomas Pajdla

  3. Max-Planck-Institut für Informatik, Campus E1 4, 66123, Saarbrücken, Germany

    Bernt Schiele

  4. ESAT - PSI, iMinds, KU Leuven, Kasteelpark Arenberg 10, Bus 2441, 3001, Leuven, Belgium

    Tinne Tuytelaars

Rights and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Silberman, N., Shapira, L., Gal, R., Kohli, P. (2014). A Contour Completion Model for Augmenting Surface Reconstructions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8691. Springer, Cham. https://doi.org/10.1007/978-3-319-10578-9_32

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp