- Pau Medrano-Gracia20,
- John Ormiston21,
- Mark Webster22,
- Susann Beier20,
- Chris Ellis21,
- Chunliang Wang23,
- Alistair A. Young20 &
- …
- Brett R. Cowan20
Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 8674))
Included in the following conference series:
5676Accesses
Abstract
Describing the detailed statistical anatomy of the coronary artery tree is important for determining the ætiology of heart disease. A number of studies have investigated geometrical features and have found that these correlate with clinical outcomes, e.g. bifurcation angle with major adverse cardiac events. These methodologies were mainly two-dimensional, manual and prone to inter-observer variability, and the data commonly relates to cases already with pathology. We propose a hybrid atlasing methodology to build a population of computational models of the coronary arteries to comprehensively and accurately assess anatomy including 3D size, geometry and shape descriptors. A random sample of 122 cardiac CT scans with a calcium score of zero was segmented and analysed using a standardised protocol. The resulting atlas includes, but is not limited to, the distributions of the coronary tree in terms of angles, diameters, centrelines, principal component shape analysis and cross-sectional contours. This novel resource will facilitate the improvement of stent design and provide a reference for hemodynamic simulations, and provides a basis for large normal and pathological databases.
Chapter PDF
Similar content being viewed by others
Keywords
- Coronary Compute Tomographic Angiography
- Major Adverse Cardiac Event
- Stent Design
- Bifurcation Angle
- Coronary Artery Tree
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Daemen, J., Wenaweser, P., Tsuchida, K., Abrecht, L., Vaina, S., Morger, C., Kukreja, N., Jüni, P., Sianos, G., Hellige, G., et al.: Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. The Lancet 369(9562), 667–678 (2007)
Dryden, I.L., Mardia, K.V.: Statistical shape analysis, vol. 4. John Wiley & Sons, New York (1998)
Dzavik, V., Kharbanda, R., Ivanov, J., Douglas, J., Bui, S., Mackie, K., Ramsamujh, R., Barolet, A., Schwartz, L., Seidelin, P.H.: Predictors of long-term outcome after crush stenting of coronary bifurcation lesions: importance of the bifurcation angle. Am. Heart J. 152(4), 762–769 (2006)
Feragen, A., Lo, P., de Bruijne, M., Nielsen, M., Lauze, F.: Towards a theory of statistical tree-shape analysis. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2008–2021 (2013)
Fiss, D.M.: Normal coronary anatomy and anatomic variations. Appl. Radiol. 36(1), 14–26 (2007)
Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., Borden, W.B., Bravata, D.M., Dai, S., Ford, E.S., Fox, C.S., et al.: Heart disease and stroke statistics–2013 update: a report from the american heart association. Circulation 127(1), e6 (2013)
Greenland, P., Bonow, R.O.: How low-risk is a coronary calcium score of zero? The importance of conditional probability. Circulation 117(13), 1627–1629 (2008)
Loukas, M., Groat, C., Khangura, R., Owens, D.G., Anderson, R.H.: The normal and abnormal anatomy of the coronary arteries. Clin. Anat. 22(1), 114–128 (2009)
Lu, L., Bi, J., Yu, S., Peng, Z., Krishnan, A., Zhou, X.S.: Hierarchical learning for tubular structure parsing in medical imaging: A study on coronary arteries using 3D CT angiography. In: IEEE 12th Intl. Conf. on Computer Vision, pp. 2021–2028. IEEE (2009)
Pflederer, T., Ludwig, J., Ropers, D., Daniel, W.G., Achenbach, S.: Measurement of coronary artery bifurcation angles by multidetector computed tomography. Invest. Radiol. 41(11), 793–798 (2006)
Rosset, A., Spadola, L., Ratib, O.: Osirix: an open-source software for navigating in multidimensional dicom images. J. Digit. Imaging 17(3), 205–216 (2004)
Rubinshtein, R., Lerman, A., Spoon, D.B., Rihal, C.S.: Anatomic features of the left main coronary artery and factors associated with its bifurcation angle: A 3-dimensional quantitative coronary angiographic study. Catheter. Cardiovasc. Interv. 80(2), 304–309 (2012)
Wang, C., Frimmel, H., Smedby, Ö.: Level-set based vessel segmentation accelerated with periodic monotonic speed function. In: SPIE Medical Imaging, p. 79621M. International Society for Optics and Photonics (2011)
Wang, C., Smedby, Ö.: Coronary artery segmentation and skeletonization based on competing fuzzy connectedness tree. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 311–318. Springer, Heidelberg (2007)
Williams, A.R., Koo, B.K., Gundert, T.J., Fitzgerald, P.J., LaDisa, J.F.: Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. J. Appl. Physiol. 109(2), 532–540 (2010)
Yang, G., Broersen, A., Petr, R., Kitslaar, P., de Graaf, M.A., Bax, J.J., Reiber, J., Dijkstra, J.: Automatic coronary artery tree labeling in coronary computed tomographic angiography datasets. In: Computing in Cardiology, pp. 109–112. IEEE (2011)
Author information
Authors and Affiliations
Dept. Anatomy with Radiology, University of Auckland, New Zealand
Pau Medrano-Gracia, Susann Beier, Alistair A. Young & Brett R. Cowan
Auckland Heart Group, Auckland, New Zealand
John Ormiston & Chris Ellis
Auckland City Hospital, Auckland, New Zealand
Mark Webster
Center for Medical Image Science and Vis., Linköping University Hospital, Sweden
Chunliang Wang
- Pau Medrano-Gracia
You can also search for this author inPubMed Google Scholar
- John Ormiston
You can also search for this author inPubMed Google Scholar
- Mark Webster
You can also search for this author inPubMed Google Scholar
- Susann Beier
You can also search for this author inPubMed Google Scholar
- Chris Ellis
You can also search for this author inPubMed Google Scholar
- Chunliang Wang
You can also search for this author inPubMed Google Scholar
- Alistair A. Young
You can also search for this author inPubMed Google Scholar
- Brett R. Cowan
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
MIT CSAIL, 32 Vassar Street, 02139, Cambridge, MA, USA
Polina Golland
Department of Radiology, Brigham and Women’s Hospital, 75 Francis St., 02115, Boston, MA, USA
Nobuhiko Hata
IRISA, CNRS/Inria Research Unit Visages, Campus Universitaire de Beaulieu, 35042, Rennes Cedex, France,
Christian Barillot
Pattern Recognition Lab, University Erlangen-Nuremberg, Martensstr. 3, 91058, Erlangen, Germany
Joachim Hornegger
Harvard School of Engineering and Applied Sciences, 323 Pierce Hall, 29 Oxford Street, 02138, Cambridge, MA, USA
Robert Howe
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Medrano-Gracia, P.et al. (2014). Construction of a Coronary Artery Atlas from CT Angiography. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. MICCAI 2014. Lecture Notes in Computer Science, vol 8674. Springer, Cham. https://doi.org/10.1007/978-3-319-10470-6_64
Download citation
Publisher Name:Springer, Cham
Print ISBN:978-3-319-10469-0
Online ISBN:978-3-319-10470-6
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative