Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Fully Bayesian Inference Framework for Population Studies of the Brain Microstructure

  • Conference paper

Abstract

Models of the diffusion-weighted signal are of strong interest for population studies of the brain microstructure. These studies are typically conducted by extracting a scalar property from the model and subjecting it to null hypothesis significance testing. This process has two major limitations: the reported p-value is a weak predictor of the reproducibility of findings and evidence for the absence of microstructural alterations cannot be gained. To overcome these limitations, this paper proposes a Bayesian framework for population studies of the brain microstructure represented by multi-fascicle models. A hierarchical model is built over the biophysical parameters of the microstructure. Bayesian inference is performed by Hamiltonian Monte Carlo sampling and results in a joint posterior distribution over the latent microstructure parameters for each group. Inference from this posterior enables richer analyses of the brain microstructure beyond the dichotomy of significance testing. Using synthetic and in-vivo data, we show that our Bayesian approach increases reproducibility of findings from population studies and opens new opportunities in the analysis of the brain microstructure.

Similar content being viewed by others

Keywords

References

  1. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian data analysis. CRC press (2013)

    Google Scholar 

  2. Hoffman, M.D., Gelman, A.: The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research (2013)

    Google Scholar 

  3. Nuzzo, R.: Scientific method: statistical errors. Nature 506(7487), 150–152 (2014)

    Article  Google Scholar 

  4. Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59(3), 2241–2254 (2012)

    Article  Google Scholar 

  5. Pasternak, O., Westin, C.F., Bouix, S., et al.: Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. The Journal of Neuroscience 32(48), 17365–17372 (2012)

    Article  Google Scholar 

  6. Scherrer, B., Warfield, S.K.: Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI. PLoS one 7(11), e48232 (2012)

    Google Scholar 

  7. Schwartzman, A., Dougherty, R., Taylor, J.: Cross-subject comparison of principal diffusion direction maps. Magnetic Resonance in Medicine 53(6), 1423–1431 (2005)

    Article  Google Scholar 

  8. Taquet, M., Scherrer, B., Commowick, O., Peters, J.M., Sahin, M., Macq, B., Warfield, S.K.: A mathematical framework for the registration and analysis of multi-fascicle models for population studies of the brain microstructure. IEEE Transactions on Medical Imaging 33(2), 504–517 (2014)

    Article  Google Scholar 

  9. Taquet, M., Scherrer, B., Boumal, N., Macq, B., Warfield, S.K.: Estimation of a multi-fascicle model from single b-value data with a population-informed prior. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 695–702. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Computational Radiology Laboratory, Harvard Medical School, Boston, USA

    Maxime Taquet, Benoît Scherrer, Jurriaan M. Peters, Sanjay P. Prabhu & Simon K. Warfield

Authors
  1. Maxime Taquet

    You can also search for this author inPubMed Google Scholar

  2. Benoît Scherrer

    You can also search for this author inPubMed Google Scholar

  3. Jurriaan M. Peters

    You can also search for this author inPubMed Google Scholar

  4. Sanjay P. Prabhu

    You can also search for this author inPubMed Google Scholar

  5. Simon K. Warfield

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. MIT CSAIL, 32 Vassar Street, 02139, Cambridge, MA, USA

    Polina Golland

  2. Department of Radiology, Brigham and Women’s Hospital, 75 Francis St., 02115, Boston, MA, USA

    Nobuhiko Hata

  3. CNRS/Inria Research Unit Visages, IRISA, Campus Universitaire de Beaulieu, 35042, Rennes Cedex, France

    Christian Barillot

  4. Pattern Recognition Lab, University Erlangen-Nuremberg, Martensstr. 3, 91058, Erlangen, Germany

    Joachim Hornegger

  5. Harvard School of Engineering and Applied Sciences, 323 Pierce Hall, 29 Oxford Street, 02138, Cambridge, MA, USA

    Robert Howe

Rights and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Taquet, M., Scherrer, B., Peters, J.M., Prabhu, S.P., Warfield, S.K. (2014). A Fully Bayesian Inference Framework for Population Studies of the Brain Microstructure. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. MICCAI 2014. Lecture Notes in Computer Science, vol 8673. Springer, Cham. https://doi.org/10.1007/978-3-319-10404-1_4

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp