- Nataliya Shakhovska ORCID:orcid.org/0000-0002-6875-853413,14,
- Oleksandr Petrovskyi ORCID:orcid.org/0000-0002-5729-544X13,
- Solomiia Fedusko ORCID:orcid.org/0000-0001-7548-585613,15 &
- …
- Michal Greguš Jr. ORCID:orcid.org/0000-0001-6207-134715
Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 15165))
Included in the following conference series:
176Accesses
Abstract
This article investigates the intersection of artificial intelligence (AI) and typography, examining the progress made in font creation using generative adversarial neural networks (GANs) and stylistic descriptors. Using GANs, the research demonstrates a new method to automate and enhance the typeface creation process by employing competitive learning between a generator and a discriminator network. AI algorithms can revolutionize font customization and localization by effectively generating typefaces that comply with specified design preferences using stylistic descriptors. The study underscores the importance of automated font creation in digital design, emphasizing its ability to enhance brand recognition, facilitate multilingual communication, and promote inclusion in digital typography. The paper showcases the effectiveness of the proposed approach in producing top-notch typefaces by conducting empirical analysis and comparing it with existing models. It also identifies potential areas for future research and enhancement in font generation technologies.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 7549
- Price includes VAT (Japan)
- Softcover Book
- JPY 9437
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mao, W., Yang, S., Shi, H., Liu, J., Wang, Z.: Intelligent typography: artistic text style transfer for complex texture and structure. IEEE Trans. Multimedia25, 6485–6498 (2023).https://doi.org/10.1109/TMM.2022.3209870
Shi, S., You, W., Han, K., Song, J., Sun, L.: Variable typography: artificial intelligence augmented reading experience. in international design engineering technical conferences and computers and information in engineering conference. In: American Society of Mechanical Engineers, vol. 87295, p. V002T02A088 (2023)
Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., Zheng, Y.: Recent progress on generative adversarial networks (GANs): a survey. IEEE Access7, 36322–36333 (2019)
Saxena, D., Cao, J.: Generative adversarial networks (GANs) challenges, solutions, and future directions. ACM Comput. Surv. (CSUR)54(3), 1–42 (2021)
Pham, T.T.T., Pham, T.D., Ta, V.C.: Evaluation of GAN-based models for phishing URL classifiers. Int. J. Comput. Netw. Inf. Secur.15(2), 1–14 (2023).https://doi.org/10.5815/ijcnis.2023.02.01
Sarangi, B., Tripathy, B.: Outlier detection technique for wireless sensor network using GAN with autoencoder to increase the network lifetime. Int. J. Comput. Netw. Inf. Secur.15(1), 26–38 (2023).https://doi.org/10.5815/ijcnis.2023.01.03
Fedushko, S., Dmytriv, A., Topylko, S., Buchii, N.: Efficiency evaluation of the design of polygraphy products in the company online marketing. In: CEUR Workshop Proceedings, vol. 2654, pp. 144–154 (2020).https://ceur-ws.org/Vol-2654/paper11.pdf
Cai, T., et al.: Personalized font recommendations: combining ml and typographic guidelines to optimize readability. In: Designing Interactive Systems Conference, pp. 1–25 (2022)
Yadav, N., Sinha, A., Jain, M., Agrawal, A., Francis, S.: Generation of images from text using AI. Int. J. Eng. Manuf.14(1), 24–37 (2024).https://doi.org/10.5815/ijem.2024.01.03
Ferdousi, B., Mc, G.T.: A survey of artificial life and nature-inspired techniques in computer graphics and visualization. Int. J. Image Graph. Sign. Process.16(1), 1–13 (2024).https://doi.org/10.5815/ijigsp.2024.01.01
Tashev, A., Takenova, Z., Arshidinova, M.: Algorithms for solving problems of resources allocation in the management of business processes in educational organizations. Int. J. Mod. Educ. Comput. Sci.15(5), 14–27 (2023).https://doi.org/10.5815/ijmecs.2023.05.02
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM63(1), 139–144 (2014).https://doi.org/10.1145/3422622
Park, J., Hassan, A., Choi, J.: CCFont: a component-based Chinese font generation model using generative adversarial networks (GANs). Appl. Sci.12(16), 8005 (2022)
Jiang, Y., Lian, Z., Tang, Y., Xiao, J.: DCFont: an end-to-end deep Chinese font generation system. In: SA 2017 Technical Briefs, Association for Computing Machinery, USA. Technical Briefs, Thailand, 27–30 November (2017).https://doi.org/10.1145/3145749.3149440
Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 5967–5976 (2017).https://doi.org/10.1109/CVPR.2017.632
Liu, M.-Y., et al.: Few-shot unsupervised image-to-image translation. In: Proceedings of the IEEE International Conference on Computer Vision (2019).http://iccv2019.thecvf.com/
Park, H., Yoo, Y., Kwak, N.: MC-GAN: multi-conditional generative adversarial network for image synthesis. arXiv (2018)
Zhang, Y., Zhang, Y., Cai, W.: Separating style and content for generalized style transfer. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 8447–8455 (2018).https://doi.org/10.1109/CVPR.2018.00881
Gao, Y., Guo, Y., Lian, Z., Tang, Y., Xiao, J.: Artistic glyph image synthesis via one-stage few-shot learning. ACM Trans. Graph.38(6), 1–12 (2019)
Li, C., Taniguchi, Y., Lu, M., Konomi, S., Nagahara, H.: Cross-language font style transfer. Appl. Intell. (53), 1–15 (2023)
PANOSE font classification system Metrics Guide: pan1
He, H., Jin, X., Chen, A.: GAS-NeXt: a few-shot cross-lingual font generator. arXiv (2022).https://doi.org/10.48550/arXiv.2212.02886
Google Fonts Files: Google (2023).https://fonts.google.com/
Acknowledgments
This study was part of research funded by the National Research Foundation of Ukraine funded this research under project number 2021.01/0103, British Academy fellowship number RaR\100727, and H2020 project ZEBAI, # 101138678, NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V01-000153.
Author information
Authors and Affiliations
Lviv Polytechnic National University, Lviv, 79013, Ukraine
Nataliya Shakhovska, Oleksandr Petrovskyi & Solomiia Fedusko
Brunel University, London, UB8 3PH, UK
Nataliya Shakhovska
Comenius University Bratislava, Odbojárov 10, 820 05, Bratislava, Slovakia
Solomiia Fedusko & Michal Greguš Jr.
- Nataliya Shakhovska
Search author on:PubMed Google Scholar
- Oleksandr Petrovskyi
Search author on:PubMed Google Scholar
- Solomiia Fedusko
Search author on:PubMed Google Scholar
- Michal Greguš Jr.
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toSolomiia Fedusko.
Editor information
Editors and Affiliations
Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland
Leszek Rutkowski
Częstochowa University of Technology, Częstochowa, Poland
Rafał Scherer
Częstochowa University of Technology, Częstochowa, Poland
Marcin Korytkowski
University of Alberta, Edmonton, AB, Canada
Witold Pedrycz
AGH University of Krakow, Kraków, Poland
Ryszard Tadeusiewicz
University of Louisville, Louisville, KY, USA
Jacek M. Zurada
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shakhovska, N., Petrovskyi, O., Fedusko, S., Greguš, M. (2025). Automated Typographic Font Generation Using Artificial Intelligence. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2024. Lecture Notes in Computer Science(), vol 15165. Springer, Cham. https://doi.org/10.1007/978-3-031-84356-3_14
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-031-84355-6
Online ISBN:978-3-031-84356-3
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative