Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Type-Theory of Algorithms with Chain-Free Memory

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Networks and Systems ((LNNS,volume 1259))

  • 142Accesses

Abstract

The results of the stepwise computations are saved in memory slots, for possible reuse. The extended calculus reduces unnecessary iterations of assignments, which are chains of unnecessary assignments, by copying values of terms from one memory slot to another, without any essential algorithmic changes. The primary applications of the chain-free type theory of recursion are for computational semantics of formal and natural languages, including programming languages and compilers.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 19447
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 24309
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. Gallin, D.: Intensional and Higher-Order Modal Logic: With Applications to Montague Semantics. North-Holland Publishing Company, Amsterdam and Oxford, and American Elsevier Publishing Company (1975).https://doi.org/10.2307/2271880

  2. Loukanova, R.: Acyclic Recursion with Polymorphic Types and Underspecification. In: van den Herik, J., Filipe, J. (eds.) Proceedings of the 8th International Conference on Agents and Artificial Intelligence. vol. 2, pp. 392–399. SciTePress — Science and Technology Publications, Lda. (2016).https://doi.org/10.5220/0005749003920399

  3. Loukanova, R.: Relationships between Specified and underspecified quantification by the theory of acyclic recursion. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J.5(4), 19–42 (2016).https://doi.org/10.14201/ADCAIJ2016541942

  4. Loukanova, R.: An approach to functional formal models of constraint-based lexicalized grammar (CBLG). Fund. Inform.152(4), 341–372 (2017).https://doi.org/10.3233/FI-2017-1524

    Article MathSciNet MATH  Google Scholar 

  5. Loukanova, R.: Computational syntax-semantics interface with type-theory of acyclic recursion for underspecified semantics. In: Osswald, R., Retoré, C., Sutton, P. (eds.) IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures. Proceedings of the Workshop, pp. 37–48. The Association for Computational Linguistics (ACL), Gothenburg, Sweden (2019).https://www.aclweb.org/anthology/W19-1005

  6. Loukanova, R.: Gamma-reduction in type theory of acyclic recursion. Fundamenta Informaticae170(4), 367–411 (2019).https://doi.org/10.3233/FI-2019-1867

  7. Loukanova, R.: Gamma-star canonical forms in the type-theory of acyclic algorithms. In: van den Herik, J., Rocha, A.P. (eds.) Agents and Artificial Intelligence. ICAART 2018, Lecture Notes in Computer Science, book series LNAI, vol. 11352, pp. 383–407. Springer International Publishing, Cham (2019).https://doi.org/10.1007/978-3-030-05453-3_18

  8. Loukanova, R.: Type-theory of acyclic algorithms for models of consecutive binding of functional neuro-receptors. In: Grabowski, A., Loukanova, R., Schwarzweller, C. (eds.) AI Aspects in Reasoning, Languages, and Computation, vol. 889, pp. 1–48. Springer International Publishing, Cham (2020).https://doi.org/10.1007/978-3-030-41425-2_1

  9. Loukanova, R.: Eta-reduction in type-theory of acyclic recursion. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J.12(1), 1–22, e29199 (2023).https://doi.org/10.14201/adcaij.29199

  10. Loukanova, R.: Logic operators and quantifiers in type-theory of algorithms. In: Bekki, D., Mineshima, K., McCready, E. (eds.) Logic and Engineering of Natural Language Semantics, Lecture Notes in Computer Science(LNCS), vol. 14213, pp. 173–198. Springer Nature Switzerland, Cham (2023).https://doi.org/10.1007/978-3-031-43977-3_11

  11. Loukanova, R.: Restricted computations and parameters in type-theory of acyclic recursion. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J.12(1), 1–40 (2023).https://doi.org/10.14201/adcaij.29081

  12. Loukanova, R.: Semantics of propositional attitudes in type-theory of algorithms. In: Bekki, D., Mineshima, K., McCready, E. (eds.) Logic and Engineering of Natural Language Semantics (LENLS 2023), Lecture Notes in Computer Science (LNCS), vol. 14569. Springer Nature Switzerland AG, Cham (2024).https://doi.org/10.1007/978-3-031-60878-0_15

  13. Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka, J., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language, vol. 49, pp. 221–242. Synthese Library. Springer, Dordrecht (1973).https://doi.org/10.1007/978-94-010-2506-5_10

  14. Moschovakis, Y.N.: A logical calculus of meaning and synonymy. Linguist. Philos.29(1), 27–89 (2006).https://doi.org/10.1007/s10988-005-6920-7

  15. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.5(3), 223–255 (1977).https://doi.org/10.1016/0304-3975(77)90044-5

  16. Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY. Theor. Comput. Sci.121(1), 411–440 (1993).https://doi.org/10.1016/0304-3975(93)90095-B

Download references

Author information

Authors and Affiliations

  1. Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

    Roussanka Loukanova

Authors
  1. Roussanka Loukanova

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toRoussanka Loukanova.

Editor information

Editors and Affiliations

  1. Vellore Institute of Technology University, Vellore, Tamil Nadu, India

    Ravikumar Chinthaginjala

  2. Kielce University of Technology, Kielce, Poland

    Pawel Sitek

  3. Department of Computer Science, Imam Abdulrahman Bin Faisal University (KSA), Dammam, Saudi Arabia

    Nasro Min-Allah

  4. Osaka Institute of Technology, Osaka, Japan

    Kenji Matsui

  5. University Rey Juan Carlos, Madrid, Spain

    Sascha Ossowski

  6. Biotechnology, Intelligent Systems and Educational Technology (BISITE) Research Group, University of Salamanca, Salamanca, Spain

    Sara Rodríguez

Rights and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loukanova, R. (2025). Type-Theory of Algorithms with Chain-Free Memory. In: Chinthaginjala, R., Sitek, P., Min-Allah, N., Matsui, K., Ossowski, S., Rodríguez, S. (eds) Distributed Computing and Artificial Intelligence, 21st International Conference. DCAI 2024. Lecture Notes in Networks and Systems, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-031-82073-1_7

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 19447
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 24309
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp