Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Detecting Fake News: Exploring Key Features in Multilingual Arabic Dialect Corpus

  • Conference paper
  • First Online:

Part of the book series:Communications in Computer and Information Science ((CCIS,volume 2340))

Included in the following conference series:

  • 2Accesses

Abstract

As misinformation continues to spread rapidly on social media platforms identifying and stopping the dissemination of fake news has become an urgent need. In this article, we propose a deep learning approach leveraging keywords for feature extraction and classification of Arabic dialect fake news. Our method achieves an accuracy of 82.3% on a corpus comprising 3000 news articles in Algerian and Tunisian dialects, Modern Standard Arabic (MSA), French, and English, featuring instances of code-switching between these languages; as well as an accuracy of 93.7% on an English fake news corpus. Our experimentation shows that the shortcut learning problem that can arise when using keyword based features can be solved using regularization techniques. Our findings also show that our approach will achieve better performance on larger Arabic dialect corpora.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. Abdelali, A., Darwish, K., Durrani, N., Mubarak, H.: Farasa: a fast and furious segmenter for Arabic. In: DeNero, J., Finlayson, M., Reddy, S. (eds.) Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pp. 11–16. Association for Computational Linguistics, San Diego, California (2016)

    Google Scholar 

  2. Agarwal, A., Mittal, M., Pathak, A., Goyal, L.M.: Fake news detection using a blend of neural networks: an application of deep learning. SN Comput. Sci.1, 1–9 (2020)

    Article MATH  Google Scholar 

  3. Ahmed, H., Traore, I., Saad, S.: Detection of online fake news using n-gram analysis and machine learning techniques. In: Traore, I., Woungang, I., Awad, A. (eds.) ISDDC 2017. LNCS, vol. 10618, pp. 127–138. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-69155-8_9

    Chapter MATH  Google Scholar 

  4. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell.2(11), 665–673 (2020)

    Article MATH  Google Scholar 

  5. Guo, Z., Schlichtkrull, M., Vlachos, A.: A survey on automated fact-checking. Trans. Assoc. Comput. Linguist.10, 178–206 (2022)

    Article MATH  Google Scholar 

  6. Iyyer, M., Manjunatha, V., Boyd-Graber, J., Daumé III, H.: Deep unordered composition rivals syntactic methods for text classification. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (volume 1: Long papers), pp. 1681–1691 (2015)

    Google Scholar 

  7. Liu, C.Z., Sheng, Y.X., Wei, Z.Q., Yang, Y.Q.: Research of text classification based on improved tf-idf algorithm. In: 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE), pp. 218–222. IEEE (2018)

    Google Scholar 

  8. Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J.: Deep learning–based text classification: a comprehensive review. ACM Comput. Surv.54(3) (2021)

    Google Scholar 

  9. Qaiser, S., Ali, R.: Text mining: use of tf-idf to examine the relevance of words to documents. Int. J. Comput. Appl.181(1), 25–29 (2018)

    MATH  Google Scholar 

  10. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: Fakenewsnet: a data repository with news content, social context and dynamic information for studying fake news on social media. arXiv preprintarXiv:1809.01286 (2018)

  11. Smaili, K., Hamza, A., Langlois, D., Amazouz, D.: Boutef: bolstering our understanding through an elaborated fake news corpus. In: International conference on Arabic language processing. Springer (2024)

    Google Scholar 

  12. de Souza, M.C., Nogueira, B.M., Rossi, R.G., Marcacini, R.M., Dos Santos, B.N., Rezende, S.O.: A network-based positive and unlabeled learning approach for fake news detection. Mach. Learn.111(10), 3549–3592 (2022)

    Article MathSciNet MATH  Google Scholar 

  13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.15(1), 1929–1958 (2014)

    MathSciNet MATH  Google Scholar 

  14. Verma, P.K., Agrawal, P., Amorim, I., Prodan, R.: Welfake: word embedding over linguistic features for fake news detection. IEEE Trans. Comput. Soc. Syst.8(4), 881–893 (2021)

    Article  Google Scholar 

  15. Vo, N., Lee, K.: Where are the facts? Searching for fact-checked information to alleviate the spread of fake news. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020) (2020)

    Google Scholar 

  16. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science359(6380), 1146–1151 (2018)

    Article MATH  Google Scholar 

  17. Wang, W.Y.: “liar, liar pants on fire”: A new benchmark dataset for fake news detection. In: Barzilay, R., Kan, M.Y. (eds.) Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 422–426. Association for Computational Linguistics, Vancouver, Canada (2017)

    Google Scholar 

  18. Wynne, H.E., Wint, Z.Z.: Content based fake news detection using n-gram models. In: Proceedings of the 21st International Conference on Information Integration and Web-Based Applications and Services, pp. 669–673 (2019)

    Google Scholar 

  19. Zeng, X., Abumansour, A.S., Zubiaga, A.: Automated fact-checking: a survey. Lang. Linguist. Compass15(10), e12438 (2021)

    Article  Google Scholar 

  20. Zhou, X., Zafarani, R.: Network-based fake news detection: a pattern-driven approach. SIGKDD Explor. Newsl.21(2), 48–60 (2019).https://doi.org/10.1145/3373464.3373473

Download references

Author information

Authors and Affiliations

  1. LORIA, University of Lorraine, 54600, Nancy, France

    Abdelouahab Hocini & Kamel Smaili

Authors
  1. Abdelouahab Hocini

    You can also search for this author inPubMed Google Scholar

  2. Kamel Smaili

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toAbdelouahab Hocini orKamel Smaili.

Editor information

Editors and Affiliations

  1. ENSIAS, Mohammed V University, Rabat, Morocco

    Boutaina Hdioud

  2. ENSIAS, Mohammed V University, Rabat, Morocco

    Si Lhoussain Aouragh

Rights and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hocini, A., Smaili, K. (2025). Detecting Fake News: Exploring Key Features in Multilingual Arabic Dialect Corpus. In: Hdioud, B., Aouragh, S.L. (eds) Arabic Language Processing: From Theory to Practice. ICALP 2024. Communications in Computer and Information Science, vol 2340. Springer, Cham. https://doi.org/10.1007/978-3-031-80438-0_18

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp