Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Model Checking Markov Chains as Distribution Transformers

  • Chapter
  • First Online:

Abstract

The conventional perspective on Markov chains considers decision problems concerning the probabilities of temporal properties being satisfied by traces of visited states. However, consider the following query made of a stochastic system modelling the weather: given the conditions today, will there be a day with less than 50% chance of rain? The conventional perspective is ill-equipped to decide such problems regarding the evolution of the initial distribution. The alternate perspective we consider views Markov chains asdistribution transformers: the focus is on the sequence of distributions on states at each step, where the evolution is driven by the underlying stochastic transition matrix. More precisely, given an initial distribution vector\(\mu \), a stochastic update transition matrixM, we ask whether the ensuing sequence of distributions\((\mu , M\mu , M^2\mu , \dots )\) satisfies a given temporal property. This is a special case of the model-checking problem for linear dynamical systems, which is not known to be decidable in full generality. The goal of this article is to delineate the classes of instances for which this problem can be solved, under the assumption that the dynamics is governed by stochastic matrices.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7550
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    In this paper, we study a more linear-algebraic perspective than usual, and hence take distributions to be column vectors, and matrices to be left-stochastic, i.e. columns sum up to 1.

  2. 2.

    The Skolem problem is often formulated equivalently in terms of linear recurrence sequences (LRS) that satisfy a recurrence relation\(u_{n+k} = a_{k-1}u_{n+k-1}+\dots + a_0 u_n\).

  3. 3.

    If either ofij is 1, then the proof is even simpler because the corresponding\(v'\) is the zero vector.

  4. 4.

    A matrixA is said to benon-degenerate if for every pair of distinct eigenvalues\(\lambda , \lambda '\), the ratio\(\lambda /\lambda '\) is not a root of unity.

  5. 5.

    This is easily seen: let\(v_\lambda , \overline{v_\lambda }, v_\gamma , \overline{v_\gamma }, v_\rho \) be eigenvectors of\(\kappa A\), and take the columns ofP to be\((v_\lambda + \overline{ v_\lambda }), i(v_\lambda - \overline{v_\lambda }), (v_\gamma + \overline{v_\gamma }), i(v_\gamma - \overline{v_\gamma }), v_\rho \).

References

  1. Agrawal, M., Akshay, S., Genest, B., Thiagarajan, P.S.: Approximate verification of the symbolic dynamics of Markov chains. J. ACM (JACM)62, 1–34 (2015)

    Article MathSciNet  Google Scholar 

  2. Almagor, S., Karimov, T., Kelmendi, E., Ouaknine, J., Worrell, J.: Deciding\(\omega \)-regular properties on linear recurrence sequences. Proc. ACM Program. Lang.5(POPL) (2021)

    Google Scholar 

  3. Axler, S.: Linear Algebra Done Right, 4th edn. Springer, Cham (2023).https://doi.org/10.1007/978-3-031-41026-0

    Book  Google Scholar 

  4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2000)

    Google Scholar 

  5. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2006).https://doi.org/10.1007/3-540-33099-2

    Book  Google Scholar 

  6. Beauquier, D., Rabinovich, A., Slissenko, A.: A logic of probability with decidable model checking. J. Log. Comput.16, 461–487 (2006)

    Article MathSciNet  Google Scholar 

  7. Bilu, Y., Luca, F., Nieuwveld, J., Ouaknine, J., Purser, D., Worrell, J.: Skolem meets schanuel. In: Szeider, S., Ganian, R., Silva, A. (eds.) 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 241, pp. 20:1–20:15, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  8. Bilu, Y., Luca, F., Nieuwveld, J., Ouaknine, J., Purser, D., Worrell, J.: The Skolem Tool (2022)

    Google Scholar 

  9. Karimov, T.: Algorithmic verification of linear dynamical systems. Ph.D. thesis, Universität des Saarlandes (2024)

    Google Scholar 

  10. Karimov, T., Kelmendi, E., Nieuwveld, J., Ouaknine, J., Worrell, J.: The power of positivity. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–11 (2023)

    Google Scholar 

  11. Karimov, T., et al.: What’s decidable about linear loops? Proc. ACM Program. Lang.6(POPL) (2022)

    Google Scholar 

  12. Korthikanti, V.A., Viswanathan, M., Agha, G., Kwon, Y.-M.: Reasoning about MDPs as transformers of probability distributions. In: QEST, pp. 199–208 (2010)

    Google Scholar 

  13. Kwon, Y.M., Agha, G.: Linear inequality LTL (iLTL): a model checker for discrete time Markov chains. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 194–208. Springer, Heidelberg (2004).https://doi.org/10.1007/978-3-540-30482-1_21

    Chapter  Google Scholar 

  14. Mignotte, M., Shorey, T.N., Tijdeman, R.: The distance between terms of an algebraic recurrence sequence. Journal für die reine und angewandte Mathematik349, 63–76 (1984)

    MathSciNet  Google Scholar 

  15. Ouaknine, J., Worrell, J.: On the positivity problem for simple linear recurrence sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 318–329. Springer, Heidelberg (2014).https://doi.org/10.1007/978-3-662-43951-7_27

    Chapter  Google Scholar 

  16. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence sequences. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014, pp. 366–379. SIAM (2014)

    Google Scholar 

  17. Vahanwala, M.: Skolem and positivity completeness of ergodic Markov chains. Inf. Process. Lett.186, 106481 (2024)

    Article MathSciNet  Google Scholar 

  18. Vereshchagin, N.K.: The problem of appearance of a zero in a linear recurrence sequence. Matematicheskie Zametki (in Russian)38, 177–189 (1985)

    Google Scholar 

Download references

Acknowledgments

This work was funded by DFG grant 389792660 as part of TRR 248 - CPEC (seehttps://www.perspicuous-computing.science). Joël Ouaknine is also affiliated with Keble College, Oxford asemmy.network fellow (https://emmy.network/).

Author information

Authors and Affiliations

  1. Technische Universität Dresden, Dresden, Germany

    Rajab Aghamov, Christel Baier & Jakob Piribauer

  2. Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

    Toghrul Karimov, Joris Nieuwveld, Joël Ouaknine & Mihir Vahanwala

Authors
  1. Rajab Aghamov

    You can also search for this author inPubMed Google Scholar

  2. Christel Baier

    You can also search for this author inPubMed Google Scholar

  3. Toghrul Karimov

    You can also search for this author inPubMed Google Scholar

  4. Joris Nieuwveld

    You can also search for this author inPubMed Google Scholar

  5. Joël Ouaknine

    You can also search for this author inPubMed Google Scholar

  6. Jakob Piribauer

    You can also search for this author inPubMed Google Scholar

  7. Mihir Vahanwala

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJakob Piribauer.

Editor information

Editors and Affiliations

  1. Ruhr University Bochum and Radboud University Nijmegen, Bochum, Germany

    Nils Jansen

  2. Radboud University Nijmegen, Nijmegen, The Netherlands

    Sebastian Junges

  3. Saarland University and University College London, Saarbrücken, Germany

    Benjamin Lucien Kaminski

  4. University of Oldenburg, Oldenburg, Germany

    Christoph Matheja

  5. RWTH Aachen University, Aachen, Germany

    Thomas Noll

  6. RWTH Aachen University, Aachen, Germany

    Tim Quatmann

  7. University of Twente and Radboud University Nijmegen, Enschede, The Netherlands

    Mariëlle Stoelinga

  8. Eindhoven University of Technology, Eindhoven, The Netherlands

    Matthias Volk

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aghamov, R.et al. (2025). Model Checking Markov Chains as Distribution Transformers. In: Jansen, N.,et al. Principles of Verification: Cycling the Probabilistic Landscape . Lecture Notes in Computer Science, vol 15261. Springer, Cham. https://doi.org/10.1007/978-3-031-75775-4_13

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7550
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp