Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Improving 2D Feature Representations by 3D-Aware Fine-Tuning

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 15060))

Included in the following conference series:

Abstract

Current visual foundation models are trained purely on unstructured 2D data, limiting their understanding of 3D structure of objects and scenes. In this work, we show that fine-tuning on 3D-aware data improves the quality of emerging semantic features. We design a method to lift semantic 2D features into an efficient 3D Gaussian representation, which allows us to re-render them for arbitrary views. Using the rendered 3D-aware features, we design a fine-tuning strategy to transfer such 3D awareness into a 2D foundation model. We demonstrate that models fine-tuned in that way produce features that readily improve downstream task performance in semantic segmentation and depth estimation through simple linear probing. Notably, though fined-tuned on a single indoor dataset, the improvement is transferable to a variety of indoor datasets and out-of-domain datasets. We hope our study encourages the community to consider injecting 3D awareness when training 2D foundation models. Project page:https://ywyue.github.io/FiT3D.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep ViT features as dense visual descriptors. In: European Conference on Computer Vision (ECCV) Workshops (2022)

    Google Scholar 

  2. Bachmann, R., Mizrahi, D., Atanov, A., Zamir, A.: MultiMAE: multi-modal multi-task masked autoencoders. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXXVII, pp. 348–367. Springer, Cham (2022).https://doi.org/10.1007/978-3-031-19836-6_20

  3. Bao, H., Dong, L., Piao, S., Wei, F.: BEiT: BERT pre-training of Image Transformers. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell.35(8), 1798–1828 (2013)

    Google Scholar 

  5. Bhat, S.F., Alhashim, I., Wonka, P.: Adabins: depth estimation using adaptive bins. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  6. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: International Conference on Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  7. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  8. Chen, M., et al.: Generative pretraining from pixels. In: International Conference on Machine Learning (ICML) (2020)

    Google Scholar 

  9. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  10. Darcet, T., Oquab, M., Mairal, J., Bojanowski, P.: Vision transformers need registers. In: International Conference on Learning Representations (ICLR) (2024)

    Google Scholar 

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2018)

    Google Scholar 

  12. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  13. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  14. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. In: International Conference on Neural Information Processing Systems (NeurIPS) (2014)

    Google Scholar 

  15. El Banani, M., et al.: Probing the 3D awareness of visual foundation models. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  16. Engelmann, F., Manhardt, F., Niemeyer, M., Tateno, K., Tombari, F.: OpenNeRF: open set 3D neural scene segmentation with pixel-wise features and rendered novel views. In: International Conference on Learning Representations (ICLR) (2024)

    Google Scholar 

  17. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision (2015)

    Google Scholar 

  18. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the Kitti dataset. Int. J. Robot. Res. (2013)

    Google Scholar 

  19. Ghiasi, G., Gu, X., Cui, Y., Lin, T.Y.: Scaling open-vocabulary image segmentation with image-level labels. In: European Conference on Computer Vision (ECCV) (2022)

    Google Scholar 

  20. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  21. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: International Conference on Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  22. Ha, H., Song, S.: Semantic abstraction: open-world 3D scene understanding from 2D vision-language models. In: Conference on Robot Learning (CoRL) (2022)

    Google Scholar 

  23. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2006)

    Google Scholar 

  24. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  25. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  26. Hou, J., Dai, X., He, Z., Dai, A., Nießner, M.: Mask3D: pre-training 2D vision transformers by learning masked 3D priors. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  27. Hou, J., Xie, S., Graham, B., Dai, A., Nießner, M.: Pri3D: can 3D priors help 2D representation learning? In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  28. Huang, R., et al.: Segment3D: learning fine-grained class-agnostic 3D segmentation without manual labels. In: European Conference on Computer Vision (ECCV) (2024)

    Google Scholar 

  29. Jatavallabhula, K.M., et al.: ConceptFusion: open-set multimodal 3D mapping. Sci. Syst. (RSS) Robot. (2023)

    Google Scholar 

  30. Ke, B., Obukhov, A., Huang, S., Metzger, N., Daudt, R.C., Schindler, K.: Repurposing diffusion-based image generators for monocular depth estimation. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  31. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. (2023)

    Google Scholar 

  32. Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: LERF: language embedded radiance fields. In: International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  33. Kirillov, A., et al.: Segment anything. In: International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  34. Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing Nerf for editing via feature field distillation. In: International Conference on Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  35. Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven Semantic Segmentation. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  36. Li, F., et al.: Mask DINO: towards a unified transformer-based framework for object detection and segmentation. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  37. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  38. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  39. Mazur, K., Sucar, E., Davison, A.J.: Feature-realistic neural fusion for real-time, open set scene understanding. In: International Conference on Robotics and Automation (ICRA) (2023)

    Google Scholar 

  40. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  41. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving Jigsaw puzzles. In: European Conference on Computer Vision (ECCV) (2016)

    Google Scholar 

  42. Oquab, M., et al.: DINOv2: learning robust visual features without supervision. Trans. Mach. Learn. Res. (2023)

    Google Scholar 

  43. Pathak, D., Girshick, R., Dollár, P., Darrell, T., Hariharan, B.: Learning features by watching objects move. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  44. Peng, S., Genova, K., Jiang, C., Tagliasacchi, A., Pollefeys, M., Funkhouser, T.: OpenScene: 3D scene understanding with open vocabularies. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  45. Qin, M., Li, W., Zhou, J., Wang, H., Pfister, H.: LangSplat: 3D language Gaussian splatting. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  46. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (ICML) (2021)

    Google Scholar 

  47. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  48. Saxena, S., et al.: The surprising effectiveness of diffusion models for optical flow and monocular depth estimation. In: International Conference on Neural Information Processing Systems (NeurIPS) (2024)

    Google Scholar 

  49. Shen, W., Yang, G., Yu, A., Wong, J., Kaelbling, L.P., Isola, P.: Distilled feature fields enable few-shot language-guided manipulation. In: Conference on Robot Learning (CoRL) (2023)

    Google Scholar 

  50. Shi, J.C., Wang, M., Duan, H.B., Guan, S.H.: Language embedded 3D Gaussians for open-vocabulary scene understanding. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  51. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012).https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  52. Takmaz, A., Fedele, E., Sumner, R.W., Pollefeys, M., Tombari, F., Engelmann, F.: OpenMask3D: open-vocabulary 3D instance segmentation. In: International Conference on Neural Information Processing Systems (NeurIPS) (2023)

    Google Scholar 

  53. Tan, H., Wu, S., Pi, J.: Semantic diffusion network for semantic segmentation. In: International Conference on Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  54. Touvron, H., Cord, M., Jégou, H.: DeiT III: revenge of the ViT. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXIV, pp. 516–533. Springer, Cham (2022).https://doi.org/10.1007/978-3-031-20053-3_30

  55. Tschernezki, V., Laina, I., Larlus, D., Vedaldi, A.: Neural feature fusion fields: 3D distillation of self-supervised 2D image representations. In: International Conference on 3D Vision (3DV) (2022)

    Google Scholar 

  56. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos. In: International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  57. Weder, S., Blum, H., Engelmann, F., Pollefeys, M.: LabelMaker: automatic semantic label generation from RGB-D trajectories. In: International Conference on 3D Vision (3DV) (2024)

    Google Scholar 

  58. Weinzaepfel, P., et al.: CroCo: self-supervised pre-training for 3D vision tasks by cross-view completion. In: International Conference on Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  59. Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: unleashing the power of large-scale unlabeled data. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  60. Yeshwanth, C., Liu, Y.C., Nießner, M., Dai, A.: ScanNet++: a high-fidelity dataset of 3D indoor scenes. In: International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  61. Zhang, J., et al.: A tale of two features: stable diffusion complements DINO for zero-shot semantic correspondence. In: International Conference on Neural Information Processing Systems (NeurIPS) (2023)

    Google Scholar 

  62. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20K dataset. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  63. Zhou, S., et al.: Feature 3DGS: supercharging 3D Gaussian splatting to enable distilled feature fields. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

Download references

Acknowledgements

Francis Engelmann is partially supported by an ETH AI Center postdoctoral research fellowship and an ETH Zurich Career Seed Award.

Author information

Authors and Affiliations

  1. ETH Zurich, Zurich, Switzerland

    Yuanwen Yue, Francis Engelmann & Siyu Tang

  2. Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrucken, Germany

    Anurag Das & Jan Eric Lenssen

  3. Google, Zurich, Switzerland

    Francis Engelmann

Authors
  1. Yuanwen Yue

    You can also search for this author inPubMed Google Scholar

  2. Anurag Das

    You can also search for this author inPubMed Google Scholar

  3. Francis Engelmann

    You can also search for this author inPubMed Google Scholar

  4. Siyu Tang

    You can also search for this author inPubMed Google Scholar

  5. Jan Eric Lenssen

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toYuanwen Yue.

Editor information

Editors and Affiliations

  1. University of Birmingham, Birmingham, UK

    Aleš Leonardis

  2. University of Trento, Trento, Italy

    Elisa Ricci

  3. Technical University of Darmstadt, Darmstadt, Germany

    Stefan Roth

  4. Princeton University, Princeton, NJ, USA

    Olga Russakovsky

  5. Czech Technical University in Prague, Prague, Czech Republic

    Torsten Sattler

  6. École des Ponts ParisTech, Marne-la-Vallée, France

    Gül Varol

1Electronic supplementary material

Below is the link to the electronic supplementary material.

Rights and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yue, Y., Das, A., Engelmann, F., Tang, S., Lenssen, J.E. (2025). Improving 2D Feature Representations by 3D-Aware Fine-Tuning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15060. Springer, Cham. https://doi.org/10.1007/978-3-031-72627-9_4

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp