Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Understanding the Importance of Evolutionary Search in Automated Heuristic Design with Large Language Models

  • Conference paper
  • First Online:

Abstract

Automated heuristic design (AHD) has gained considerable attention for its potential to automate the development of effective heuristics. The recent advent of large language models (LLMs) has paved a new avenue for AHD, with initial efforts focusing on framing AHD as an evolutionary program search (EPS) problem. However, inconsistent benchmark settings, inadequate baselines, and a lack of detailed component analysis have left the necessity of integrating LLMs with search strategies and the true progress achieved by existing LLM-based EPS methods to be inadequately justified. This work seeks to fulfill these research queries by conducting a large-scale benchmark comprising four LLM-based EPS methods and four AHD problems across nine LLMs and five independent runs. Our extensive experiments yield meaningful insights, providing empirical grounding for the importance of evolutionary search in LLM-based AHD approaches, while also contributing to the advancement of future EPS algorithmic development. To foster accessibility and reproducibility, we have fully open-sourced our benchmark and corresponding results.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    For instance, an intuitive heuristic for an OBP problem could be “place the item in the first bin with available capacity remaining”.

  2. 2.

    The ineffectiveness is in the sense that a simple EPS baseline achieves better mean performance with much lower variances than standalone LLMs with an order of magnitude more query budget, as depicted in Fig. 2.

  3. 3.

    The ineffectiveness is in the sense that a low-capacity LLM coupled with a simple EPS baseline significantly standalone LLMs with orders of magnitude more model capacities (e.g., GPT-4 and Claude 3 Opus), as depicted in Fig. 3.

  4. 4.

    We exclude UniXcoder and StarCoder from Table 2 as they are mainly designed for code completion, which are not compatible with EoH and ReEvo that also require comprehension of natural languages.

References

  1. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc.64, 1695–1724 (2013)

    Article  Google Scholar 

  2. Stützle, T., López-Ibáñez, M.: Automated design of metaheuristic algorithms. In: Handbook of Metaheuristics, pp. 541–579 (2019)

    Google Scholar 

  3. Wu, X., Consoli, P., Minku, L., Ochoa, G., Yao, X.: An evolutionary hyper-heuristic for the software project scheduling problem. In: International Conference on Parallel Problem Solving from Nature (2016)

    Google Scholar 

  4. Chen, T., et al.: Learning to optimize: a primer and a benchmark. J. Mach. Learn. Res.23(189), 1–59 (2022)

    MathSciNet  Google Scholar 

  5. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Practice and Theory of Automated Timetabling (2001)

    Google Scholar 

  6. Mockus, J.: Application of bayesian approach to numerical methods of global and stochastic optimization. J. Global Optim.4, 347–365 (1994)

    Article MathSciNet  Google Scholar 

  7. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput.4, 87–112 (1994)

    Article  Google Scholar 

  8. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2013).https://doi.org/10.1007/978-3-662-04726-2

    Book  Google Scholar 

  9. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Survey on genetic programming and machine learning techniques for heuristic design in job shop scheduling. IEEE Trans. Evol. Comput.28(1), 147–167 (2024)

    Article  Google Scholar 

  10. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Importance-aware genetic programming for automated scheduling heuristics learning in dynamic flexible job shop scheduling. In: International Conference on Parallel Problem Solving from Nature (2022)

    Google Scholar 

  11. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic programming. Genet. Program. Evol. Mach.11(3), 339–363 (2010)

    Article  Google Scholar 

  12. Romera-Paredes, B., et al.: Mathematical discoveries from program search with large language models. Nature625(7995), 468–475 (2024)

    Article  Google Scholar 

  13. Tao, T., Vu, V.H.: Additive Combinatorics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  14. Liu, F., et al.: Evolution of heuristics: towards efficient automatic algorithm design using large language model. In: International Conference on Machine Learning (2024)

    Google Scholar 

  15. Ye, H., Wang, J., Cao, Z., Song, G.: Reevo: large language models as hyper-heuristics with reflective evolution. arXiv preprintarXiv:2402.01145 (2024)

  16. Matai, R., Singh, S.P., Mittal, M.L.: Traveling salesman problem: an overview of applications, formulations, and solution approaches. Travel. Salesman Prob. Theory Appl.1(1), 1–25 (2010)

    Google Scholar 

  17. Seiden, S.S.: On the online bin packing problem. J. ACM49(5), 640–671 (2002)

    Article MathSciNet  Google Scholar 

  18. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv preprintarXiv:1604.00772 (2016)

  19. Brown, T., et al.: Language models are few-shot learners. Adv. Neural Inf. Process. Syst. (2020)

    Google Scholar 

  20. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A Classification of Hyper-heuristic Approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 449–468. Springer, Boston (2010)

    Google Scholar 

  21. He, X., Zhao, K., Chu, X.: Automl: a survey of the state-of-the-art. Knowl.-Based Syst.212, 106622 (2021)

    Article  Google Scholar 

  22. Burke, E.K., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling problems. J. Sched.9, 115–132 (2006)

    Article  Google Scholar 

  23. Ross, H.-L. F.P., Corne, D.: A promising hybrid GA/heuristic approach for open-shop scheduling problems. In: European Conference on Artificial Intelligence (1994)

    Google Scholar 

  24. Hart, E., Ross, P., Nelson, J.: Solving a real-world problem using an evolving heuristically driven schedule builder. Evol. Comput.6(1), 61–80 (1998)

    Article  Google Scholar 

  25. Terashima-Marín, H., Flores-Alvarez, E., Ross, P.: Hyper-heuristics and classifier systems for solving 2d-regular cutting stock problems. In: Annual Conference on Genetic and Evolutionary Computation (2005)

    Google Scholar 

  26. Rodríguez, J.V., Petrovic, S., Salhi, A.: A combined meta-heuristic with hyper-heuristic approach to the scheduling of the hybrid flow shop with sequence dependent setup times and uniform machines. In: Multidisciplinary International Conference on Scheduling: Theory and Applications. MISTA: Paris, France (2007)

    Google Scholar 

  27. Burke, E.K., Hyde, M.R., Kendall, G.: Evolving bin packing heuristics with genetic programming. In: International Conference on Parallel Problem Solving from Nature (2006)

    Google Scholar 

  28. Duflo, G., Kieffer, E., Brust, M.R., Danoy, G., Bouvry, P.: A GP hyper-heuristic approach for generating tsp heuristics. In: 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (2019)

    Google Scholar 

  29. Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem heuristics: leading methods, implementations and latest advances. Eur. J. Oper. Res.211(3), 427–441 (2011)

    Article MathSciNet  Google Scholar 

  30. Drechsler, R., Becker, B.: Learning heuristics by genetic algorithms. In: ASP-DAC’95/CHDL’95/VLSI’95 with EDA Technofair (1995)

    Google Scholar 

  31. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Comput.20(1), 110–124 (2015)

    Article  Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. (2017)

    Google Scholar 

  33. Achiam, J., et al.: Gpt-4 technical report. arXiv preprintarXiv:2303.08774 (2023)

  34. Zhao, W.X., et al.: A survey of large language models. arXiv preprintarXiv:2303.18223 (2023)

  35. Tian, H., et al.: chatgpt the ultimate programming assistant–how far is it?. arXiv preprintarXiv:2304.11938 (2023)

  36. Yu, C., Liu, X., Tang, C., Feng, W., Lv, J.: GPT-NAS: neural architecture search with the generative pre-trained model. arXiv preprintarXiv:2305.05351 (2023)

  37. Zhang, S., Gong, C., Wu, L., Liu, X., Zhou, M.: Automl-GPT: automatic machine learning with gpt. arXiv preprintarXiv:2305.02499 (2023)

  38. Zhou, Y., et al.: Large language models are human-level prompt engineers. arXiv preprintarXiv:2211.01910 (2022)

  39. Wang, X., et al.: Promptagent: strategic planning with language models enables expert-level prompt optimization. arXiv preprintarXiv:2310.16427 (2023)

  40. Zelikman, E., Lorch, E., Mackey, L., Kalai, A.T.: Self-taught optimizer (stop): recursively self-improving code generation. arXiv preprintarXiv:2310.02304 (2023)

  41. Liu, S., Chen, C., Qu, X., Tang, K., Ong, Y.-S.: Large language models as evolutionary optimizers. arXiv preprintarXiv:2310.19046 (2023)

  42. Liu, F., et al.: Large language model for multi-objective evolutionary optimization. arXiv preprintarXiv:2310.12541 (2023)

  43. Chen, A., Dohan, D., So, D.: EvoPrompting: language models for code-level neural architecture search. Adv. Neural Inf. Process. Syst. (2024)

    Google Scholar 

  44. Meyerson, E., et al.: Language model crossover: variation through few-shot prompting. arXiv preprintarXiv:2302.12170 (2023)

  45. Hemberg, E., Moskal, S., O’Reilly, U.-M.: Evolving code with a large language model. arXiv preprintarXiv:2401.07102 (2024)

  46. Yang, C., et al.: Large language models as optimizers. arXiv preprintarXiv:2309.03409 (2023)

  47. Guo, Q., et al.: Connecting large language models with evolutionary algorithms yields powerful prompt optimizers. arXiv preprintarXiv:2309.08532 (2023)

  48. Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C., Stanley, K.O.: Evolution through large models (2022)

    Google Scholar 

  49. Wu, X., Wu, S.-H., Wu, J., Feng, L., Tan, K.C.: Evolutionary computation in the era of large language model: survey and roadmap. arXiv preprintarXiv:2401.10034 (2024)

  50. Code models overview (2023)

    Google Scholar 

  51. Li, R., et al.: Starcoder: may the source be with you!. arXiv preprintarXiv:2305.06161 (2023)

  52. Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural Inf. Process. Syst. (2022)

    Google Scholar 

  53. Guo, D., et al.: Deepseek-coder: when the large language model meets programming–the rise of code intelligence. arXiv preprintarXiv:2401.14196 (2024)

  54. Roziere, B., et al.: Code llama: open foundation models for code. arXiv preprintarXiv:2308.12950 (2023)

  55. Holland, J.H.: Genetic algorithms. Sci. Am.267(1), 66–73 (1992)

    Article  Google Scholar 

  56. Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., Yao, S.: Reflexion: language agents with verbal reinforcement learning. Adv. Neural Inf. Process. Syst. (2024)

    Google Scholar 

  57. Grochow, J.: New applications of the polynomial method: the cap set conjecture and beyond. Bull. Am. Math. Soc.56(1), 29–64 (2019)

    Article MathSciNet  Google Scholar 

  58. Beasley, J.E.: Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc.41(11), 1069–1072 (1990)

    Article  Google Scholar 

  59. Castiñeiras, I., De Cauwer, M., O’Sullivan, B.: Weibull-based benchmarks for bin packing. In: International Conference on Principles and Practice of Constraint Programming (2012)

    Google Scholar 

  60. Liu, F., et al.: An example of evolutionary computation+ large language model beating human: design of efficient guided local search. arXiv preprintarXiv:2401.02051 (2024)

  61. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!. arXiv preprintarXiv:1803.08475 (2018)

  62. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprintarXiv:2107.03374 (2021)

  63. Hendrycks, D., et al.: Measuring massive multitask language understanding. arXiv preprintarXiv:2009.03300 (2020)

  64. Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., Yin, J.: UniXcoder: unified cross-modal pre-training for code representation. In: Annual Meeting of the Association for Computational Linguistics (2022)

    Google Scholar 

  65. Anthropic. The claude 3 model family: Opus, sonnet, haiku (2024)

    Google Scholar 

  66. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Conference of the North American Chapter of the Association for Computational Linguistics (2019)

    Google Scholar 

  67. Ma, Y.J., et al.: Eureka: human-level reward design via coding large language models. In: International Conference on Learning Representations (2024)

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (GRF Project No. CityU11215622), the National Natural Science Foundation of China (Grant No. 62106096), the Natural Science Foundation of Guangdong Province (Grant No. 2024A1515011759), the National Natural Science Foundation of Shenzhen (Grant No. JCYJ20220530113013031).

Author information

Authors and Affiliations

  1. Department of Computer Science, City University of Hong Kong, Hong Kong, China

    Rui Zhang, Fei Liu, Xi Lin, Zhichao Lu & Qingfu Zhang

  2. School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China

    Zhenkun Wang

Authors
  1. Rui Zhang

    You can also search for this author inPubMed Google Scholar

  2. Fei Liu

    You can also search for this author inPubMed Google Scholar

  3. Xi Lin

    You can also search for this author inPubMed Google Scholar

  4. Zhenkun Wang

    You can also search for this author inPubMed Google Scholar

  5. Zhichao Lu

    You can also search for this author inPubMed Google Scholar

  6. Qingfu Zhang

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toZhichao Lu orQingfu Zhang.

Editor information

Editors and Affiliations

  1. University of Applied Sciences Upper Austria, Wels, Austria

    Michael Affenzeller

  2. University of Applied Sciences Upper Austria, Hagenberg, Austria

    Stephan M. Winkler

  3. Leiden University, Leiden, The Netherlands

    Anna V. Kononova

  4. University of Paderborn, Paderborn, Germany

    Heike Trautmann

  5. Jožef Stefan Institute, Ljubljana, Slovenia

    Tea Tušar

  6. University of Coimbra, Coimbra, Portugal

    Penousal Machado

  7. Leiden University, LEIDEN, The Netherlands

    Thomas Bäck

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, R., Liu, F., Lin, X., Wang, Z., Lu, Z., Zhang, Q. (2024). Understanding the Importance of Evolutionary Search in Automated Heuristic Design with Large Language Models. In: Affenzeller, M.,et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15149. Springer, Cham. https://doi.org/10.1007/978-3-031-70068-2_12

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp