- Hrach Ayunts ORCID:orcid.org/0000-0001-7618-762317,
- Varduhi Yeghiazaryan ORCID:orcid.org/0009-0006-4175-782919,
- Shant Navasardyan ORCID:orcid.org/0000-0002-1999-999917 &
- …
- Humphrey Shi ORCID:orcid.org/0000-0002-2922-566318,20,21,22
Part of the book series:Communications in Computer and Information Science ((CCIS,volume 1905))
Included in the following conference series:
146Accesses
Abstract
Interactive tools play an important role in solving image segmentation problems. In this paper, we present a new interactive segmentation framework for high-accuracy segmentation. The main interaction of the user is to provide clicks inside the object of interest and control the mask-growing process with a slider. We use propagation on superpixels for region growth. To do large-scale evaluation we automate the user interactions and compare our method with state-of-the-art approaches on a few datasets with detailed annotations. Our method consistently outperforms the competitors on high accuracies and certain classes of images. We also do experiments with human annotators to show how more time-consuming naive approaches are compared to our method. Moreover, in contrast to state-of-the-art deep learning methods that stop improving segmentation accuracy beyond 20–100 clicks, our algorithm guarantees accuracy improvement after every iteration.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 12583
- Price includes VAT (Japan)
- Softcover Book
- JPY 10724
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
OpenCV library.https://opencv.org/. Accessed 28 Aug 2023
Benenson, R., Popov, S., Ferrari, V.: Large-scale interactive object segmentation with human annotators. In: CVPR, pp. 11700–11709 (2019)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell.40(4), 834–848 (2017)
Chen, X., Zhao, Z., Yu, F., Zhang, Y., Duan, M.: Conditional diffusion for interactive segmentation. In: ICCV, pp. 7345–7354 (2021)
Chen, X., Zhao, Z., Zhang, Y., Duan, M., Qi, D., Zhao, H.: Focalclick: towards practical interactive image segmentation. In: CVPR, pp. 1300–1309 (2022)
Cheng, B., Girshick, R., Dollár, P., Berg, A.C., Kirillov, A.: Boundary iou: Improving object-centric image segmentation evaluation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15334–15342 (2021)
Galeev, D., Popenova, P., Vorontsova, A., Konushin, A.: Contour-based interactive segmentation. arXiv preprintarXiv:2302.06353 (2023)
Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: CVPR (2019)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV, pp. 2961–2969 (2017)
Jang, W.D., Kim, C.S.: Interactive image segmentation via backpropagating refinement scheme. In: CVPR, pp. 5297–5306 (2019)
Levin, A., Rav-Acha, A., Lischinski, D.: Spectral matting. IEEE Trans. Pattern Anal. Mach. Intell.30(10), 1699–1712 (2008)
Lin, T.Y., et al.: Microsoft COCO: Common objects in context. In: ECCV, pp. 740–755 (2014)
Lin, Z., Duan, Z.P., Zhang, Z., Guo, C.L., Cheng, M.M.: Focuscut: diving into a focus view in interactive segmentation. In: CVPR, pp. 2637–2646 (2022)
Lin, Z., Zhang, Z., Chen, L.Z., Cheng, M.M., Lu, S.P.: Interactive image segmentation with first click attention. In: CVPR, pp. 13339–13348 (2020)
Liu, Q., et al.: Pseudoclick: interactive image segmentation with click imitation. In: ECCV, pp. 728–745 (2022)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
Malladi, R., Sethian, J.A.: An O(N log N) algorithm for shape modeling. Proc. National Acad. Sci.93(18), 9389–9392 (1996)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, pp. 416–423 (2001)
McGuinness, K., O’Connor, N.E.: A comparative evaluation of interactive segmentation algorithms. Pattern Recogn.43(2), 434–444 (2010)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR, pp. 724–732 (2016)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI, pp. 234–241 (2015)
Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph.23(3), 309–314 (2004)
Sethian, J.A.: Fast marching methods. SIAM Rev.41(2), 199–235 (1999)
Sethian, J.A.: Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys.169(2), 503–555 (2001)
Sharma, G., Wu, W., Dalal, E.N.: The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color. Res. Appl.30(1), 21–30 (2005)
Sofiiuk, K., Petrov, I., Barinova, O., Konushin, A.: F-brs: rethinking backpropagating refinement for interactive segmentation. In: CVPR, pp. 8623–8632 (2020)
Sofiiuk, K., Petrov, I.A., Konushin, A.: Reviving iterative training with mask guidance for interactive segmentation. arXiv preprintarXiv:2102.06583 (2021)
Sofiiuk, K., Petrov, I.A., Konushin, A.: Reviving iterative training with mask guidance for interactive segmentation. In: ICIP, pp. 3141–3145 (2022)
Stutz, D., Hermans, A., Leibe, B.: Superpixels: an evaluation of the state-of-the-art. Comput. Vis. Image Underst.166, 1–27 (2018)
Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: Solo: Segmenting objects by locations. In: ECCV, pp. 649–665 (2020)
Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: Denseaspp for semantic segmentation in street scenes. In: CVPR, pp. 3684–3692 (2018)
Yao, J., Boben, M., Fidler, S., Urtasun, R.: Real-time coarse-to-fine topologically preserving segmentation. In: CVPR, pp. 2947–2955 (2015)
Yeghiazaryan, V.: Parallel Front Propagation in Medical Image Segmentation. DPhil thesis, University of Oxford (2018)
Yeghiazaryan, V., Voiculescu, I.: Family of boundary overlap metrics for the evaluation of medical image segmentation. J. Med. Imag.5(1), 015006–015006 (2018)
Zhang, S., Liew, J.H., Wei, Y., Wei, S., Zhao, Y.: Interactive object segmentation with inside-outside guidance. In: CVPR, pp. 12234–12244 (2020)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: CVPR, pp. 633–641 (2017)
Zhou, M., et al.: Interactive segmentation as gaussion process classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19488–19497 (2023)
Acknowledgements
Varduhi Yeghiazaryan’s participation in this project was supported by Picsart AI Research. We also thank the annotators for their time and contribution to our research.
Author information
Authors and Affiliations
Picsart AI Research (PAIR), Yerevan, Armenia
Hrach Ayunts & Shant Navasardyan
Picsart AI Research (PAIR), Miami, USA
Humphrey Shi
American University of Armenia, Yerevan, Armenia
Varduhi Yeghiazaryan
University of Oregon, Eugene, USA
Humphrey Shi
University of Illinois Urbana-Champaign, Champaign, USA
Humphrey Shi
Georgia Institute of Technology, Atlanta, USA
Humphrey Shi
- Hrach Ayunts
You can also search for this author inPubMed Google Scholar
- Varduhi Yeghiazaryan
You can also search for this author inPubMed Google Scholar
- Shant Navasardyan
You can also search for this author inPubMed Google Scholar
- Humphrey Shi
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toVarduhi Yeghiazaryan.
Editor information
Editors and Affiliations
National Research University Higher School of Economics, Moscow, Russia
Dmitry I. Ignatov
Krasovskii Institute of Mathematics and Mechanics of Russian Academy of Sciences, Yekaterinburg, Russia
Michael Khachay
University of Oslo, Oslo, Norway
Andrey Kutuzov
American University of Armenia, Yerevan, Armenia
Habet Madoyan
Artificial Intelligence Research Institute, Moscow, Russia
Ilya Makarov
Universität Hamburg, Hamburg, Germany
Irina Nikishina
Skolkovo Institute of Science and Technology, Moscow, Russia
Alexander Panchenko
Mohamed bin Zayed University of Artificial Intelligence and Technology Innovation Institute, Abu Dhabi, United Arab Emirates
Maxim Panov
Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
Panos M. Pardalos
National Research University Higher School of Economics, Nizhny Novgorod, Russia
Andrey V. Savchenko
Apptek, Aachen, Nordrhein-Westfalen, Germany
Evgenii Tsymbalov
Kazan Federal University and HSE University, Moscow, Russia
Elena Tutubalina
MTS AI, Moscow, Russia
Sergey Zagoruyko
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ayunts, H., Yeghiazaryan, V., Navasardyan, S., Shi, H. (2024). Interactive Image Segmentation with Superpixel Propagation. In: Ignatov, D.I.,et al. Recent Trends in Analysis of Images, Social Networks and Texts. AIST 2023. Communications in Computer and Information Science, vol 1905. Springer, Cham. https://doi.org/10.1007/978-3-031-67008-4_13
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-031-67007-7
Online ISBN:978-3-031-67008-4
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative