Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

The Battle of Information Representations: Comparing Sentiment and Semantic Features for Forecasting Market Trends

  • Conference paper
  • First Online:

Abstract

The study of the stock market with the attraction of machine learning approaches is a major direction for revealing hidden market regularities. This knowledge contributes to a profound understanding of financial market dynamics and getting behavioural insights, which could hardly be discovered with traditional analytical methods. Stock prices are inherently interrelated with world events and social perception. Thus, in constructing the model for stock price prediction, the critical stage is to incorporate such information on the outside world, reflected through news and social media posts. To accommodate this, researchers leverage the implicit or explicit knowledge representations: (1) sentiments extracted from the texts or (2) raw text embeddings. However, there is too little research attention to the direct comparison of these approaches in terms of the influence on the predictive power of financial models. In this paper, we aim to close this gap and figure out whether the semantic features in the form of contextual embeddings are more valuable than sentiment attributes for forecasting market trends. We consider the corpus of Twitter posts related to the largest companies by capitalization from NASDAQ and their close prices. To start, we demonstrate the connection of tweet sentiments with the volatility of companies’ stock prices. Convinced of the existing relationship, we train Temporal Fusion Transformer models for price prediction supplemented with either tweet sentiments or tweet embeddings. Our results show that in the substantially prevailing number of cases, the use of sentiment features leads to higher metrics. Noteworthy, the conclusions are justifiable within the considered scenario involving Twitter posts and stocks of the biggest tech companies.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    Source code foreco2AI is available athttps://github.com/sb-ai-lab/Eco2AI.

References

  1. Araci, D.: Finbert: financial sentiment analysis with pre-trained language models. CoRR abs/1908.10063 (2019).http://arxiv.org/abs/1908.10063

  2. Aseeri, A.O.: Effective short-term forecasts of Saudi stock price trends using technical indicators and large-scale multivariate time series. PeerJ Comput. Sci.9, e1205 (2023).https://doi.org/10.7717/peerj-cs.1205

    Article  Google Scholar 

  3. Audrino, F., Sigrist, F., Ballinari, D.: The impact of sentiment and attention measures on stock market volatility. Int. J. Forecast.36(2), 334–357 (2020).https://doi.org/10.1016/j.ijforecast.2019.05.010

    Article  Google Scholar 

  4. Budennyy, S.A., et al.: eco2AI: carbon emissions tracking of machine learning models as the first step towards sustainable AI. Doklady Math.106(S1), S118–S128 (2022).https://doi.org/10.1134/S1064562422060230

    Article  Google Scholar 

  5. Budennyy, S., Kazakov, A., Kovtun, E., Zhukov, L.: New drugs and stock market: how to predict pharma market reaction to clinical trial announcements (2022).https://doi.org/10.48550/ARXIV.2208.07248

  6. Chandola, D., Mehta, A., Singh, S., Tikkiwal, V.A., Agrawal, H.: Forecasting directional movement of stock prices using deep learning. Ann. Data Sci. (2022).https://doi.org/10.1007/s40745-022-00432-6

    Article  Google Scholar 

  7. Chen, J., Chen, T., Shen, M., Shi, Y., Wang, D., Zhang, X.: Gated three-tower transformer for text-driven stock market prediction. Multimed. Tools Appl.81(21), 30093–30119 (2022).https://doi.org/10.1007/s11042-022-11908-1

    Article  Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding (2018).https://doi.org/10.48550/ARXIV.1810.04805

  9. Dogan, M., Metin, O., Tek, E., Yumusak, S., Oztoprak, K.: Speculator and influencer evaluation in stock market by using social media. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 4559–4566 (12 2020).https://doi.org/10.1109/BigData50022.2020.9378170

  10. Guo, T., Jamet, N., Betrix, V., Piquet, L.A., Hauptmann, E.: Esg2risk: a deep learning framework from esg news to stock volatility prediction (2020).https://doi.org/10.48550/ARXIV.2005.02527

  11. Gupta, U., Bhattacharjee, V., Bishnu, P.S.: Stocknet-gru based stock index prediction. Expert Syst. Appl.207, 117986 (2022).https://doi.org/10.1016/j.eswa.2022.117986

    Article  Google Scholar 

  12. Herzen, J., et al.: Darts: user-friendly modern machine learning for time series. J. Mach. Learn. Res.23(124), 1–6 (2022).http://jmlr.org/papers/v23/21-1177.html

  13. Hu, Z., Liu, W., Bian, J., Liu, X., Liu, T.Y.: Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 261–269. WSDM ’18, Association for Computing Machinery, New York, NY, USA (2018).https://doi.org/10.1145/3159652.3159690

  14. Hutto, C., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 8, pp. 216–225 (2014)

    Google Scholar 

  15. Kamal, S., Sharma, S., Kumar, V., Alshazly, H., Hussein, H.S., Martinetz, T.: Trading stocks based on financial news using attention mechanism. Mathematics10(12) (2022).https://doi.org/10.3390/math10122001

  16. Khan, W., Ghazanfar, M.A., Azam, M.A., Karami, A., Alyoubi, K.H., Alfakeeh, A.S.: Stock market prediction using machine learning classifiers and social media, news. J. Ambient. Intell. Humaniz. Comput.13(7), 3433–3456 (2022).https://doi.org/10.1007/s12652-020-01839-w

    Article  Google Scholar 

  17. Li, C., Qian, G.: Stock price prediction using a frequency decomposition based GRU transformer neural network. Appl. Sci.13(1) (2023).https://doi.org/10.3390/app13010222

  18. Li, Y., Lv, S., Liu, X., Zhang, Q.: Incorporating transformers and attention networks for stock movement prediction. Complexity2022, 7739087 (2022).https://doi.org/10.1155/2022/7739087

    Article  Google Scholar 

  19. Lim, B., Arik, S.O., Loeff, N., Pfister, T.: Temporal fusion transformers for interpretable multi-horizon time series forecasting (2019).https://doi.org/10.48550/ARXIV.1912.09363

  20. Lin, C.T., Wang, Y.K., Huang, P.L., Shi, Y., Chang, Y.C.: Spatial-temporal attention-based convolutional network with text and numerical information for stock price prediction. Neural Comput. Appl.34(17), 14387–14395 (2022).https://doi.org/10.1007/s00521-022-07234-0

    Article  Google Scholar 

  21. Lin, F., Li, P., Lin, Y., Chen, Z., You, H., Feng, S.: Kernel-based hybrid interpretable transformer for high-frequency stock movement prediction. In: 2022 IEEE International Conference on Data Mining (ICDM), pp. 241–250 (2022).https://doi.org/10.1109/ICDM54844.2022.00034

  22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013).https://doi.org/10.48550/ARXIV.1301.3781

  23. Muennighoff, N.: SGPT: GPT sentence embeddings for semantic search (2022).https://doi.org/10.48550/ARXIV.2202.08904

  24. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. Association for Computational Linguistics, Doha, Qatar (Oct 2014).https://doi.org/10.3115/v1/D14-1162

  25. Reback, J., McKinney, W., et al.: pandas: data analysis and manipulation library for python (2023).https://pandas.pydata.org

  26. Sentence transformer model all-minilm-l6-v2.https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2. Accessed10 Dec 2022

  27. Sentence transformer model all-mpnet-base-v2.https://huggingface.co/microsoft/mpnet-base. Accessed Jan 15 2023

  28. Sentiment inferencing model for stock related commments.https://huggingface.co/zhayunduo/roberta-base-stocktwits-finetuned. Accessed 10 Dec 2022

  29. Tang, N., Shen, Y., Yao, J.: Learning to fuse multiple semantic aspects from rich texts for stock price prediction. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds.) Web Information Systems Engineering - WISE 2019, pp. 65–81. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  30. Wang, C., Chen, Y., Zhang, S., Zhang, Q.: Stock market index prediction using deep transformer model. Expert Syst. Appl.208, 118128 (2022).https://doi.org/10.1016/j.eswa.2022.118128

    Article  Google Scholar 

  31. Python library yfinance.https://pypi.org/project/yfinance/. Accessed Jan 10 2022

  32. Zaichenko, A., Kazakov, A., Kovtun, E., Budennyy, S.: Comparing sentiment and semantic features for forecasting market trends.https://github.com/azadata/Sentiment-Semantic-Paper (2023)

Download references

Author information

Authors and Affiliations

  1. Higher School of Economics University, Moscow, Russia

    Andrei Zaichenko

  2. Sber AI Lab, Moscow, Russia

    Aleksei Kazakov, Elizaveta Kovtun & Semen Budennyy

  3. Artificial Intelligence Research Institute (AIRI), Moscow, Russia

    Semen Budennyy

Authors
  1. Andrei Zaichenko

    You can also search for this author inPubMed Google Scholar

  2. Aleksei Kazakov

    You can also search for this author inPubMed Google Scholar

  3. Elizaveta Kovtun

    You can also search for this author inPubMed Google Scholar

  4. Semen Budennyy

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSemen Budennyy.

Editor information

Editors and Affiliations

  1. National Research University Higher School of Economics, Moscow, Russia

    Dmitry I. Ignatov

  2. Krasovskii Institute of Mathematics and Mechanics of Russian Academy of Sciences, Yekaterinburg, Russia

    Michael Khachay

  3. University of Oslo, Oslo, Norway

    Andrey Kutuzov

  4. American University of Armenia, Yerevan, Armenia

    Habet Madoyan

  5. Artificial Intelligence Research Institute, Moscow, Russia

    Ilya Makarov

  6. Universität Hamburg, Hamburg, Germany

    Irina Nikishina

  7. Skolkovo Institute of Science and Technology, Moscow, Russia

    Alexander Panchenko

  8. Mohamed bin Zayed University of Artificial Intelligence and Technology Innovation Institute, Abu Dhabi, United Arab Emirates

    Maxim Panov

  9. Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA

    Panos M. Pardalos

  10. National Research University Higher School of Economics, Nizhny Novgorod, Russia

    Andrey V. Savchenko

  11. Apptek, Aachen, Nordrhein-Westfalen, Germany

    Evgenii Tsymbalov

  12. Kazan Federal University and HSE University, Moscow, Russia

    Elena Tutubalina

  13. MTS AI, Moscow, Russia

    Sergey Zagoruyko

Rights and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaichenko, A., Kazakov, A., Kovtun, E., Budennyy, S. (2024). The Battle of Information Representations: Comparing Sentiment and Semantic Features for Forecasting Market Trends. In: Ignatov, D.I.,et al. Recent Trends in Analysis of Images, Social Networks and Texts. AIST 2023. Communications in Computer and Information Science, vol 1905. Springer, Cham. https://doi.org/10.1007/978-3-031-67008-4_12

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp