Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Augmenting the One-Worker-Multiple-Machines System: A Softbot Approach to Support the Operator 5.0

  • Conference paper
  • First Online:

Abstract

Industry 4.0/5.0 workplaces are characterized by humans surrounded by massive digitalization, huge data generation, and data-driven management. However, this brings more complexity to the operators as they are exposed to vast amounts of data to reason about as well as to many situations of overwhelming cognitive load, leading them to potentially less assertive and stressful decision-making. This becomes challenging when operators should manage two or more machines simultaneously as in a ‘One-Worker-Multiple-Machines’ (OWMM) working environment, including critical processes and equipment. This paper proposes a softbot approach to address these issues devising an OWMM smart cockpit environment where an intelligent softbot supports an operator in several production situations. A software prototype was developed to show the potential and benefits of the softbot approach in OWMM environments.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 17159
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Mourtzis, D., Angelopoulos, J., Panopulos, N.: The future of the human–machine interface (HMI) in society 5.0. Future Internet15(5), 162 (2023)

    Google Scholar 

  2. Romero, D., Stahre, J., Taisch, M.: The operator 4.0: towards socially sustainable factories of the future. Comput. Ind. Eng.139, 106128 (2020)

    Google Scholar 

  3. Romero, D., Stahre, J.: Towards the resilient operator 5.0: the future of work in smart resilient manufacturing systems. Procedia CIRP104 1089–1094 (2021)

    Google Scholar 

  4. Thorvald, P., Fast-Berglund, Å., Romero, D.: The Cognitive Operator 4.0. Advances in Transdisciplinary Engineering, pp. 3–8. IOS Press (2021)

    Google Scholar 

  5. WEF: World Economic Forum Whitepaper: Augmented Workforce: Empowering People, Transforming Manufacturing (2022)

    Google Scholar 

  6. Breque, M., De Nul, L., Petridis, A.: Industry 5.0 – towards a sustainable, human-centric and resilient European industry. European Commission (2021)

    Google Scholar 

  7. Romero, D., Vernadat, F.: Enterprise information systems state of the art: past, present and future trends. Comput. Ind.79, 3–13 (2016)

    Google Scholar 

  8. Spasojevic, I., Havzi, S., Stefanovic, D., et al.: Research trends and topics in IJIEM from 2010 to 2020: a statistical history. Int. J. Ind. Eng. Manag.12, 228–242 (2021)

    Google Scholar 

  9. Mcdermott, A.: Information Overload Is Crushing You. Here are 11 Secrets That Will Help. Workzone (2017).https://www.workzone.com/blog/information-overload/

  10. Rabelo, R.J., Zambiasi, S.P., Romero, D.: Collaborative softbots: enhancing operational excellence in systems of cyber-physical systems. In: Camarinha-Matos, L.M., Afsarmanesh, H., Antonelli, D. (eds.) PRO-VE 2019. IFIPAICT, vol. 568, pp. 55–68. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-28464-0_6

  11. Park, E., Jung, Y., Kim, I., Lee, U.: Charlie and the semi-automated factory: data-driven operator behavior and performance modeling for human-machine collaborative systems. In: Conference on Human Factors in Computing Systems, pp. 1–16 (2023)

    Google Scholar 

  12. Kusiak, A.: Smart manufacturing. Int. J. Prod. Res.56, 508–517 (2018)

    Article MATH  Google Scholar 

  13. Petroni, A.: Critical factors for MRP implementation in small and medium firms. Int. J. Oper. Prod. Manag.22, 329–348 (2002)

    Article MATH  Google Scholar 

  14. Benkalai, I., Rebaine, D., Baptiste, P.: Assigning operators in a flow shop environment. In: 6th International Conference on Information Systems, Logistics and Supply Chain (2016)

    Google Scholar 

  15. BCG – Boston Consulting Group Whitepaper: The Global Workforce Crisis (2014)

    Google Scholar 

  16. Rabelo, R.J., Zambiasi, S.P., Romero, D.: Softbots 4.0: supporting cyber-physical social systems in smart production management. Int. J. Ind. Eng. Manag.14, 63–94 (2023)

    Google Scholar 

  17. Kim, J.H.: Ubiquitous robot. In: Reusch, B. (eds.) Computational Intelligence, Theory and Applications. Advances in Soft Computing, vol. 33, pp. 451–459. Springer, Heidelberg (2005).https://doi.org/10.1007/3-540-31182-3_41

  18. Wellsandt, S., et al.: Fostering human-AI collaboration with digital intelligent assistance in manufacturing SMEs. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds.) APMS 2023. IFIPAICT, vol. 689, pp. 649–661. Springer, Cham (2023).https://doi.org/10.1007/978-3-031-43662-8_46

  19. WEF: World Economic Forum Whitepaper: Navigating the Industrial Metaverse: A Blueprint for Future Innovations (2024)

    Google Scholar 

  20. Lu, Y., Zheng, H., Xia, W., Xu, X.: Outlook on human-centric manufacturing towards industry 5.0. J. Manuf. Syst.62, 612–627 (2022)

    Google Scholar 

  21. Loss, L., Rabelo, R.J., Luz, D., Pereira-Klen, A., Klen, E.R.: Using data mining for virtual enterprise management. In: Camarinha-Matos, L.M. (eds.) BASYS 2004. IFIPIFIP, vol. 159, pp. 443–450. Springer, Boston (2005).https://doi.org/10.1007/0-387-22829-2_47

  22. Alberdi, E., Povyakalo, A., Ayton, P.: Why are people’s decisions sometimes worse with computer support? In: 28th International Conference of Computer Safety, Reliability, and Security, pp. 18–31 (2009)

    Google Scholar 

  23. Freire, S., et al.: Lessons learned from designing and evaluating CLAICA: a continuously learning AI cognitive assistant. In: 28th International Conference on Intelligent User Interfaces, pp. 553–568 (2023)

    Google Scholar 

  24. Zambiasi, L.P., Rabelo, R.J., Zambiasi, S.P., Lizot, R.: Supporting resilient operator 5.0: an augmented softbot approach. In: Kim, D.Y., von Cieminski, G., Romero, D. (eds.) APMS 2022. IFIPAICT, vol. 664, pp. 494–502. Springer, Cham (2022).https://doi.org/10.1007/978-3-031-16411-8_57

  25. NSFLOW.https://nsflow.com/industries/augmented-reality-in-manufacturing-industry

  26. Longo, F., Nicoletti, L., Padovano, A.: Smart operators in industry 4.0: a human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Ind. Eng.113, 144–159 (2017)

    Google Scholar 

  27. Rabelo, R.J., Romero, D., Zambiasi, S.P.: Softbots supporting the operator 4.0 at smart factory environments. In: Moon, I., Lee, G., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018.IFIPAICT, vol. 536, pp. 456–464. Springer, Cham (2018).https://doi.org/10.1007/978-3-319-99707-0_57

  28. Sterling, S., et al.: Cognitive twin: a cognitive approach to personalized assistants. In: AAAI Spring Symposium Combining Machine Learning with Knowledge Engineering (2020)

    Google Scholar 

  29. Rabelo, R.J., Romero, D., Zambiasi, S.P., Magalhães, L.C.: When softbots meet digital twins: towards supporting the cognitive operator 4.0. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) APMS 2021. IFIPAICT, vol. 634, pp. 37–47. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-85914-5_5

  30. Zajec, P., Rožanec, J.M., Novalija, I., Fortuna, B., Mladenić, D., Kenda, K.: Towards active learning based smart assistant for manufacturing. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) APMS 2021. IFIPAICT, vol. 633, pp. 295–302. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-85910-7_31

  31. Bousdekis, A., et al.: Human-AI collaboration in quality control with augmented manufacturing analytics. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) APMS 2021. IFIPAICT, vol. 633, pp. 303–310. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-85910-7_32

  32. Yigitbas, E., Sauer, S.: Self-adaptive digital assistance systems for work 4.0. Digit. Transform., 475–496 (2023)

    Google Scholar 

  33. Zambiasi, L.P., Rabelo, R.J., Zambiasi, S.P., Romero, D.: Metaverse-based softbot tutors for inclusive industrial workplaces: supporting impaired operators 5.0. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds.) APMS 2023. IFIPAICT, vol. 689, pp. 662–677. Springer, Cham (2023).https://doi.org/10.1007/978-3-031-43662-8_47

  34. Zhang, W., Gu, H.: Job-shop scheduling problems considering similar learning effect in one-worker and multiple-machine patterns. China Mech. Eng.34, 1701–1709 (2023)

    MATH  Google Scholar 

  35. Zheng, T., Grosse, E., Morana, S., Glock, C.: A review of digital assistants in production and logistics: applications, benefits, and challenges. Int. J. Prod. Res. (2024)

    Google Scholar 

  36. Pereira, R., Lima, C., Pinto, T., Reis, A.: Virtual assistants in industry 4.0: a systematic literature review. Electronics12(19), 4096 (2023)

    Google Scholar 

  37. Wellsandt, S., Hribernik, K., Thoben, K.D.: Anatomy of a digital assistant. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) APMS 2021. IFIPAICT, vol. 633, pp. 321–330. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-85910-7_34

  38. Zhang, C., et al.: Towards new-generation human-centric smart manufacturing in industry 5.0: a systematic review. Adv. Eng. Inf.57, 102121 (2023)

    Google Scholar 

  39. Bechinie, C., et al.: Toward human-centered intelligent assistance system in manufacturing: challenges and potentials for operator 5.0. In: 5th International Conference on Industry 4.0 and Smart Manufacturing, pp. 1584–1596 (2024)

    Google Scholar 

  40. Parasuraman, R., Sheridan, T., Wickens, C.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. Part A Syst. Hum.30(3), 286–297 (2000)

    Article MATH  Google Scholar 

  41. Parasuramam, R., Manzey, D.: Complacency and bias in human use of automation: an attentional integration. J. Hum. Fact. Ergon. Soc.52(3), 381–410 (2010)

    Article  Google Scholar 

  42. Stieglitz, S., et al.: Collaborating with virtual assistants in organizations: analyzing social loafing tendencies and responsibility attribution. Inf. Syst. Front.24, 745–770 (2022)

    Article MATH  Google Scholar 

  43. Guastello, S.J.: Human Factors Engineering and Ergonomics: A Systems Approach. CRC Press, Boca Raton (2023)

    Google Scholar 

  44. Kernan Freire, S., et al.: Knowledge sharing in manufacturing using LLM-powered tools: user study and model benchmarking. Front. Artif. Intell.7, 1293084 (2024)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by (i) CAPES, The Brazilian Agency for Higher Education, project PrInt “Automation 4.0” and “Finance Code 001”, and (ii) the European Union’s Horizon Europe project WASABI “White-label shop floor digital intelligent assistance and human-AI collaboration in manufacturing” (GA 101092176). The authors thank Mr. Bruno T. Guedes, the Hightech company’s engineer (www.hightech.ind.br), for having provided the information that mainly served for the scenarios’ conception of this work.

Author information

Authors and Affiliations

  1. UFSC – Federal University of Santa Catarina, Florianópolis, Brazil

    Ricardo J. Rabelo & Lara P. Zambiasi

  2. IFSC – Federal Institute of Santa Catarina, Chapecó, Brazil

    Lara P. Zambiasi

  3. UNISUL – University of the South of Santa Catarina, Florianópolis, Brazil

    Saulo P. Zambiasi

  4. BIBA at the University of Bremen, Hochschulring 20, 28359, Bremen, Germany

    Lara P. Zambiasi, Mina Foosherian, Stefan Wellsandt & Karl Hribernik

  5. Tecnológico de Monterrey, Mexico City, Mexico

    David Romero

Authors
  1. Ricardo J. Rabelo

    You can also search for this author inPubMed Google Scholar

  2. Lara P. Zambiasi

    You can also search for this author inPubMed Google Scholar

  3. Saulo P. Zambiasi

    You can also search for this author inPubMed Google Scholar

  4. Mina Foosherian

    You can also search for this author inPubMed Google Scholar

  5. Stefan Wellsandt

    You can also search for this author inPubMed Google Scholar

  6. David Romero

    You can also search for this author inPubMed Google Scholar

  7. Karl Hribernik

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toRicardo J. Rabelo.

Editor information

Editors and Affiliations

  1. Chemnitz University of Technology, Chemnitz, Germany

    Matthias Thürer

  2. West Saxon University of Applied Sciences Zwickau, Zwickau, Germany

    Ralph Riedel

  3. ZF Friedrichshafen AG, Friedrichshafen, Germany

    Gregor von Cieminski

  4. Tecnológico de Monterrey, Mexico City, Mexico

    David Romero

Rights and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rabelo, R.J.et al. (2024). Augmenting the One-Worker-Multiple-Machines System: A Softbot Approach to Support the Operator 5.0. In: Thürer, M., Riedel, R., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments. APMS 2024. IFIP Advances in Information and Communication Technology, vol 729. Springer, Cham. https://doi.org/10.1007/978-3-031-65894-5_25

Download citation

Publish with us

Societies and partnerships

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 17159
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp