Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Obfuscating Evasive Decision Trees

  • Conference paper
  • First Online:

Abstract

We present a new encoder for hiding parameters in an interval membership function. As an application, we design a simple and efficientvirtual black-box obfuscator forevasive decision trees. The security of our construction is proved in the random oracle model. Our goal is to increase the class of programs that have practical and cryptographically secure obfuscators.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    Health Insurance Portability and Accountability Act of 1996.

References

  1. Ateniese, G., Mancini, L.V., Spognardi, A., Villani, A., Vitali, D., Felici, G.: Hacking smart machines with smarter ones: how to extract meaningful data from machine learning classifiers. Int. J. Secure. Network.10(3), 137–150 (2015)

    Article  Google Scholar 

  2. Banerjee, S., Galbraith, S.D., Khan, T., Castellanos, J.H., Russello, G.: Preventing reverse engineering of control programs in industrial control systems. In: Proceedings of the 9th ACM Cyber-Physical System Security Workshop, pp. 48–59 (2023)

    Google Scholar 

  3. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfuscation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 26–51. Springer, Heidelberg (2014).https://doi.org/10.1007/978-3-642-54242-8_2

    Chapter  Google Scholar 

  4. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001).https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  5. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.: Secure evaluation of private linear branching programs with medical applications. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439. Springer, Heidelberg (2009).https://doi.org/10.1007/978-3-642-04444-1_26

    Chapter  Google Scholar 

  6. Barni, M., et al.: Efficient privacy-preserving classification of ECG signals. In: 2009 First IEEE International Workshop on Information Forensics and Security (WIFS), pp. 91–95. IEEE (2009)

    Google Scholar 

  7. Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New techniques for obfuscating conjunctions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 636–666. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-17659-4_22

    Chapter  Google Scholar 

  8. Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi, K.: A simple obfuscation scheme for pattern-matching with wildcards. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 731–752. Springer, Cham (2018).https://doi.org/10.1007/978-3-319-96878-0_25

    Chapter  Google Scholar 

  9. Blurock, E.S.: Automatic learning of chemical concepts: research octane number and molecular substructures. Comput. Chem.19(2), 91–99 (1995)

    Article  Google Scholar 

  10. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted medical data. J. Biomed. Inform.50, 234–243 (2014)

    Article  Google Scholar 

  11. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. Cryptology ePrint Archive (2014)

    Google Scholar 

  12. Boyle, E., Ishai, Y., Meyer, P., Robere, R., Yehuda, G.: On low-end obfuscation and learning. In: 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2023)

    Google Scholar 

  13. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 498–507 (2007)

    Google Scholar 

  14. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997).https://doi.org/10.1007/BFb0052255

    Chapter  Google Scholar 

  15. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010).https://doi.org/10.1007/978-3-642-11799-2_5

    Chapter  Google Scholar 

  16. Cong, K., Das, D., Park, J., Pereira, H.V.: SortingHat: efficient private decision tree evaluation via homomorphic encryption and transciphering. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 563–577 (2022)

    Google Scholar 

  17. Decaestecker, C., et al.: Methodological aspects of using decision trees to characterise leiomyomatous tumors. Cytometry J. Int. Soc. Anal. Cytol.24(1), 83–92 (1996)

    Google Scholar 

  18. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333 (2015)

    Google Scholar 

  19. Galbraith, S.D., Zobernig, L.: Obfuscated fuzzy hamming distance and conjunctions from subset product problems. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 81–110. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-36030-6_4

    Chapter  Google Scholar 

  20. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput.45(3), 882–929 (2016)

    Article MathSciNet  Google Scholar 

  21. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 612–621. IEEE (2017)

    Google Scholar 

  22. Karnouskos, S.: Stuxnet worm impact on industrial cyber-physical system security. In: 37th Annual Conference of the IEEE Industrial Electronics Society, IECON 2011, pp. 4490–4494. IEEE (2011)

    Google Scholar 

  23. Kesarwani, M., Mukhoty, B., Arya, V., Mehta, S.: Model extraction warning in MLaaS paradigm. In: Proceedings of the 34th Annual Computer Security Applications Conference, pp. 371–380 (2018)

    Google Scholar 

  24. Lee, T., Edwards, B., Molloy, I., Su, D.: Defending against model stealing attacks using deceptive perturbations. arXiv preprintarXiv:1806.00054 (2018)

  25. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees evaluation via linear functions. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 494–512. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-66399-9_27

    Chapter  Google Scholar 

  26. Pal, S., Gupta, Y., Shukla, A., Kanade, A., Shevade, S., Ganapathy, V.: A framework for the extraction of deep neural networks by leveraging public data. arXiv preprintarXiv:1905.09165 (2019)

  27. Quiring, E., Arp, D., Rieck, K.: Forgotten siblings: unifying attacks on machine learning and digital watermarking. In: 2018 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 488–502. IEEE (2018)

    Google Scholar 

  28. Silverstein, C., Shieber, S.M.: Predicting individual book use for off-site storage using decision trees. Libr. Q.66(3), 266–293 (1996)

    Article  Google Scholar 

  29. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models via prediction APIs. In: 25th USENIX Security Symposium (USENIX Security 2016), pp. 601–618 (2016)

    Google Scholar 

  30. Wee, H.: On obfuscating point functions. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 523–532 (2005)

    Google Scholar 

  31. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 600–611. IEEE (2017)

    Google Scholar 

  32. Zheng, H., Ye, Q., Hu, H., Fang, C., Shi, J.: BDPL: a boundary differentially private layer against machine learning model extraction attacks. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 66–83. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-29959-0_4

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Phillip Rogaway for discussions on methods for obfuscating inequalities. We thank the Marsden Fund of the Royal Society of New Zealand for supporting this research. We thank the reviewers of INDOCRYPT 2023 for their insightful comments.

Author information

Authors and Affiliations

  1. University of Auckland, Auckland, New Zealand

    Shalini Banerjee, Steven D. Galbraith & Giovanni Russello

Authors
  1. Shalini Banerjee

    You can also search for this author inPubMed Google Scholar

  2. Steven D. Galbraith

    You can also search for this author inPubMed Google Scholar

  3. Giovanni Russello

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toShalini Banerjee.

Editor information

Editors and Affiliations

  1. Nanyang Technological University, Singapore, Singapore

    Anupam Chattopadhyay

  2. Nanyang Technological University, Singapore, Singapore

    Shivam Bhasin

  3. Radboud University, Nijmegen, The Netherlands

    Stjepan Picek

  4. Indian Institute of Technology Madras, Chennai, India

    Chester Rebeiro

Rights and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, S., Galbraith, S.D., Russello, G. (2024). Obfuscating Evasive Decision Trees. In: Chattopadhyay, A., Bhasin, S., Picek, S., Rebeiro, C. (eds) Progress in Cryptology – INDOCRYPT 2023. INDOCRYPT 2023. Lecture Notes in Computer Science, vol 14460. Springer, Cham. https://doi.org/10.1007/978-3-031-56235-8_5

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp