Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Mammals as Paleoenvironmental Proxies

  • Chapter
  • First Online:

Abstract

Mammals can be defined as the least inclusive clade containingOrnithorhynchus anatinus (Shaw in Nat Miscellany 10(118):7,1799) andHomosapiens Linnaeus,1758. Mexico is the third country with the highest mammalian species richness in the world. Their fossil record in this megadiverse country spans from the Early Jurassic to the Late Pleistocene. Research of fossil mammals have been centered on taxonomy and until recently, some paleoecological and paleoenvironmental reconstructions have been published. In this chapter, some of the techniques of paleoenvironmental reconstruction based on fossil mammals are described (microwear, mesowear, stable isotope analysis, bioclimatic models, ecometric analyses, and mutual ecogeographic range) and some examples of their use with the Mexican record are provided. The extensive fossil record available for some geological epochs makes the Mexican mammals a rich source of paleoenvironmental data that needs to be further explored.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 15729
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  • Ackermans NL (2020) The history of mesowear: a review. PeerJ 8:e8519.https://doi.org/10.7717/PEERJ.8519/SUPP-2

    Article  Google Scholar 

  • Aguilar-Tomasini MA, Martin MD, Speed JDM (2021) Assessing spatial patterns of phylogenetic diversity of Mexican mammals for biodiversity conservation. Glob Ecol Conserv 31(2021):1–10.https://doi.org/10.1016/j.gecco.2021.e01834

    Article  Google Scholar 

  • Arroyo-Cabrales J, Polaco OJ, Johnson E (2005) La mastofauna del Cuaternario tardío de México. Instituto Nacional de Antropología e Historia, Subdirección de Laboratorios y Apoyo Académico. Final report SNIBCONABIO proyecto No. G012. México. Retrieved 2022 February 28.http://www.conabio.gob.mx/institucion/proyectos/resultados/InfG012.pdf

  • Barnosky AD (1989) The Late Pleistocene event as a paradigm for widespread mammal extinction. In: Donovan SK (ed) Mass extinctions: processes and evidence. Belhaven Press, London, pp 235–254

    Google Scholar 

  • Barnosky AD, Lindsey EL (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat Int 217(1–2):10–29

    Article  Google Scholar 

  • Barrón-Ortíz CR, Theodor JM, Arroyo-Cabrales J (2014) Dietary resource partitioning in the Late Pleistocene horses from Cedral, north-central Mexico: evidence from the study of dental wear. Rev Mex Cienc Geol 31(2):260–269

    Google Scholar 

  • Behrensmeyer AK, Hook RW (1992) Paleoenvironmental contexts and taphonomic modes. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues HD, Wing SL (eds) Terrestrial ecosystems through time. Evolutionary Paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago, pp 15–136

    Google Scholar 

  • Ben-David M, Flaherty EA (2012) Stable isotopes in mammalian research: a beginner’s guide. J Mammal 93(2):312–328.https://doi.org/10.1644/11-MAMM-S-166.1

    Article  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE et al (2007) The delayed rise of present-day mammals. Nature 446(7135):507–512.https://doi.org/10.1038/nature05634

    Article CAS  Google Scholar 

  • Blain HA, Bailon S, Cuenca-Bescós G et al (2009) Long-term climate record inferred from early-middle Pleistocene amphibian and squamate reptile assemblages at the Gran Dolina Cave, Atapuerca, Spain. J Hum Evol 56(1):55–65.https://doi.org/10.1016/j.jhevol.2008.08.020

    Article  Google Scholar 

  • Boardman GS, Secord R (2013) Stable isotope paleoecology of White River ungulates during the Eocene-Oligocene climate transition in northwestern Nebraska. Palaeogeogr Palaeoclimatol Palaeoecol 375:38–49.https://doi.org/10.1016/j.palaeo.2013.02.010

    Article  Google Scholar 

  • Bocherens H, Cotte M, Bonini RA et al (2017) Isotopic insight on paleodiet of extinct Pleistocene megafaunal xenarthrans from Argentina. Gondwana Res 48:7–14.https://doi.org/10.1016/j.gr.2017.04.003

    Article CAS  Google Scholar 

  • Bradham JL, DeSantis LRG, Jorge MLS et al (2018) Dietary variability of extinct tayassuids and modern white-lipped peccaries (Tayassu pecari) as inferred from dental microwear and stable isotope analysis. Palaeogeogr Palaeoclimatol Palaeoecol 499:93–101.https://doi.org/10.1016/j.palaeo.2018.03.020

    Article  Google Scholar 

  • Bravo-Cuevas VM, Priego-Vargas J (2009) Dietary evaluation of a hipparionin horse population from the middle Miocene of Oaxaca, southeastern Mexico. Rev Mex Cienc Geol 26(2):356–366

    Google Scholar 

  • Bravo-Cuevas VM, Jiménez-Hidalgo E (2015) First reported occurrence ofPalaeolama mirifica (Camelidae, Lamini) from the Late Pleistocene (Rancholabrean) of Puebla, central Mexico. Bol Soc Geol Mex 67(1):13–20

    Article  Google Scholar 

  • Bravo-Cuevas VM, Jiménez-Hidalgo E (2018) Advances on the paleobiology of late Pleistocene mammals from central and southern Mexico. In: Huard G, Gareau J (eds) The Pleistocene: Geography, Geology, and Fauna. Nova Science Publishers, New York, pp 277–313

    Google Scholar 

  • Bravo-Cuevas VM, Jiménez-Hidalgo E, Priego-Vargas J (2011) Taxonomía y hábito alimentario deEquus conversidens (Perissodactyla, Equidae) del Pleistoceno Tardío (Rancholabreano) de Hidalgo, centro de México. Rev Mex Cienc Geol 28(1):65–82

    Google Scholar 

  • Bravo-Cuevas VM, Morales-García NM, Cabral-Perdomo MA (2015a) Description of mastodons (Mammut americanum) from the late Pleistocene of southeastern Hidalgo, central Mexico. Bol Soc Geol Mex 67(2):337–347

    Article  Google Scholar 

  • Bravo-Cuevas VM, Priego-Vargas J, Jiménez-Hidalgo E et al (2015b) Feeding ecology ofAstrohippus stockii from the late Hemphillian of central Mexico: stable carbon isotopes analysis and dental wear patterns. Ameghiniana 52(5):502–516.https://doi.org/10.5710/AMGH.21.05.2015.2900

    Article  Google Scholar 

  • Bravo-Cuevas VM, Arroyo-Cabrales J, Priego-Vargas J (2016) The record of camelids (Artiodactyla, Camelidae) from the Valsequillo basin, late Pleistocene of Puebla state, central Mexico: taxonomy, diet, and geographic distribution. Rev Bras Paleontol 19(2):243–258.https://doi.org/10.4072/rbp.2016.2.08

    Article  Google Scholar 

  • Bravo-Cuevas VM, Rivals F, Priego-Vargas J (2017) Paleoecology (δ13C and δ18O stable isotopes analysis) of a mammalian assemblage from the late Pleistocene of Hidalgo, central Mexico and implications for a better understanding of environmental conditions in temperate North America (18°–36°N Lat.). Palaeogeogr Palaeoclimatol Palaeoecol 485(1):632–643.https://doi.org/10.1016/j.palaeo.2017.07.018

  • Bravo-Cuevas VM, Ortiz-Caballero E, Jiménez-Hidalgo E et al (2020) Taxonomía y hábito alimentario de ejemplares deMammuthus columbi (Proboscidea: Elephantidae) del centro y sur de México. Bol Soc Geol Mex 72(1):e141019.https://doi.org/10.18268/bsgm2020v72n1a141019

  • Broughton JM, Weitzel EM (2018) Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat Commun 9(1):5441

    Article CAS  Google Scholar 

  • Burgin CJ, Colella JP, Kahn PL et al (2018) How many species of mammals are there? J Mammal 99(1):1–14.https://doi.org/10.1093/jmammal/gyx147

  • Butler K, Louys J, Travouillon K (2014) Extending dental mesowear analyses to Australian marsupials, with applications to six Plio-Pleistocene kangaroos from southeast Queensland. Palaeogeogr Palaeoclimatol Palaeoecol 408:11–25.https://doi.org/10.1016/j.palaeo.2014.04.024

    Article  Google Scholar 

  • Calandra I, Merceron G (2016) Dental microwear texture analysis in mammalian ecology. Mamm Rev 46(3):215–228.https://doi.org/10.1111/mam.12063

    Article  Google Scholar 

  • Carbot-Chanona G (2021)Teleocerasy cf.Peraceras (Perissodactyla, Rhinocerotidae) en el Mioceno tardío de Chiapas, México. Lum 2(1):18–29

    Google Scholar 

  • Carbot-Chanona G, Lagunas-Rodríguez Z, Jiménez-Moreno FJ et al (2017) Aspectos paleobiológicos de dos ejemplares deMammuthus columbi (Mammalia, Proboscidea, Elephantidae) del Pleistoceno de Puebla, centro de México. Bol Soc Geol Mex 69(3):591–609.https://doi.org/10.18268/bsgm2017v69n3a5

  • Carranza-Castañeda O (2006) Late Tertiary fossil localities in central Mexico between 19°–23°N. In: Carranza-Castañeda O, Lindsay EH (eds) Advances in late Tertiary vertebrate paleontology in Mexico and the Great American Biotic Interchange. Universidad Nacional Autónoma de México, Instituto de Geología and Centro de Geociencias, Publicación Especial, México, pp 45–60

    Google Scholar 

  • Carranza-Castañeda O (2019)Dinohippus mexicanus (Early-Late, Late, and Latest Hemphillian) and the transition to genusEquus, in Central Mexico Faunas. Front Earth Sci 7:89.https://doi.org/10.3389/feart.2019.00089

    Article  Google Scholar 

  • Carranza-Castañeda O, Jiménez-Hidalgo E (2021) Pliocene Antilocapridae (Mammalia: Artiodactyla) from San Miguel de Allende, Guanajuato, central Mexico. J South Am Earth Sci 112(1):103571.https://doi.org/10.1016/j.jsames.2021.103571

    Article  Google Scholar 

  • Carranza-Castañeda O, Aranda-Gómez JJ, Wang X et al (2013) The early late Hemphillian (Hh2) faunal assemblage from Juchipila basin, state of Zacatecas, Mexico and its biostratigraphic correlation with other Hemphillian faunas in central Mexico. Contrib Sci 521(1):13–49

    Article  Google Scholar 

  • Cersoy S, Zazzo A, Lebon M et al (2017) Collagen extraction and stable isotope analysis of small vertebrate bones: a comparative approach. Radiocarbon 59(3):679–694.https://doi.org/10.1017/RDC.2016.82

    Article CAS  Google Scholar 

  • Cervantes-Barriga R, Marín-Leyva AH, García-Zepeda ML et al (2021) Taxonomy, diet and geographical provenance of fossil species ofSigmodon from west central Mexico during the late Pleistocene. PalZ 95:145–161.https://doi.org/10.1007/s12542-020-00512-z

    Article  Google Scholar 

  • Christensen HB (2014) Similar associations of tooth microwear and morphology indicate similar diet across marsupial and placental mammals. PLoS ONE 9(8):e102789.https://doi.org/10.1371/journal.pone.0102789

    Article CAS  Google Scholar 

  • Clementz MT (2012) New insight from old bones: stable isotope analysis of fossil mammals. J Mammal 93(2):368–380.https://doi.org/10.1644/11-MAMM-S-179.1

    Article  Google Scholar 

  • Croft DA, Weinstein D (2008) The first application of the mesowear method to endemic South American ungulates (Notoungulata). Palaeogeogr Palaeoclimatol Palaeoecol 269(1–2):103–114.https://doi.org/10.1016/j.palaeo.2008.08.007

    Article  Google Scholar 

  • Cruz JA, Arroyo-Cabrales J, Reynoso VH (2016) Reconstructing the paleoenvironment of Loltún Cave, Yucatán, Mexico, with Pleistocene amphibians and reptiles and their paleobiogeographic implications. Rev Mex Cienc Geol 33(3):342–354

    Google Scholar 

  • Cruz JA, Alarcón-D I, Figueroa-Castro DM et al (2021) Fossil pigmy rattlesnake inside the mandible of an American mastodon and use of fossil reptiles for the paleoclimatic reconstruction of a Pleistocene locality in Puebla, Mexico. Quat Int 574:116–126.https://doi.org/10.1016/j.quaint.2020.10.058

    Article  Google Scholar 

  • Czerwonogora A, Fariña RA, Tonni EP (2011) Diet and isotopes of Late Pleistocene ground sloths: first results forLestodon andGlossotherium (Xenarthra, Tardigrada). N Jb Geol Paläont Abh 262(3):257–266

    Article  Google Scholar 

  • Damuth J, Janis CM (2014) A comparison of observed molar wear rates in extant herbivorous mammals. Ann Zool Fenn 51(1–2):188–200.https://doi.org/10.5735/086.051.0219

    Article  Google Scholar 

  • Danowitz M, Hou S, Mihlbachler M et al (2016) A combined-mesowear analysis of late Miocene giraffids from North Chinese and Greek localities of the Pikermian Biome. Palaeogeogr Palaeoclimatol Palaeoecol 449:194–204.https://doi.org/10.1016/j.palaeo.2016.02.026

    Article  Google Scholar 

  • DeSantis LRG (2016) Dental microwear textures: reconstructing diets of fossil mammals. Surf Topogr Metrol Prop 4(2):023002.https://doi.org/10.1088/2051-672X/4/2/023002

    Article  Google Scholar 

  • DeSantis LRG, Scott JR, Schubert BW et al (2013) Direct comparisons of 2D and 3D dental microwear proxies in extant herbivorous and carnivorous mammals. PLoS ONE 8(8):e71428.https://doi.org/10.1371/journal.pone.0071428

    Article CAS  Google Scholar 

  • DeSantis LRG, Crites JM, Feranec RS et al (2019) Causes and consequences of pleistocene megafaunal extinctions as revealed from Rancho La Brea mammals. Curr Biol 29(15):2488–2495.https://doi.org/10.1016/j.cub.2019.06.059

    Article CAS  Google Scholar 

  • Díaz-Sibaja R, Jiménez-Hidalgo E, García-Zepeda ML (2018a) Una nueva localidad fosilífera en Oaxaca (México) y el registro más austral deBison latifrons. Implicaciones paleobiogeográficas, paleoecológicas y paleoambientales. Bol Soc Geol Mex 70(1):201‒222.https://doi.org/10.18268/bsgm2018v70n1a12

  • Díaz-Sibaja R, Jiménez-Hidalgo E, Ponce-Saavedra J et al (2018b) A combined mesowear analysis of MexicanBison antiquus shows a generalist diet with geographical variation. J Paleontol 92(6):1130–1139.https://doi.org/10.1017/jpa.2018.19

    Article  Google Scholar 

  • Eronen JT, Puolamäki K, Liu L et al (2010) Precipitation and large herbivorous mammals I: estimates from present-day communities. Evol Ecol Res 12:217–233

    Google Scholar 

  • Every RG (1970) Sharpness of teeth in man and other primates. Postilla 143:1–30

    Google Scholar 

  • Every RG, Kühne WG (1971) Biomodal wear of mammalian teeth. In: Kermack DM, Kermack KA (eds) Early mammals. Academic Press, London, pp 23–27

    Google Scholar 

  • Faith JT, Lyman RL (2019) Paleozoology and paleoenvironments: fundamentals, assumptions, techniques. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Falkowski PG (2001) Biogeochemical cycles. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, San Diego, pp 437–453

    Chapter  Google Scholar 

  • Feranec RS (2005) Growth rate and duration of growth in the adult canine ofSmilodon gracilis, and inferences on diet through stable isotope analysis. Bull Fla Mus Nat Hist 45(4):369–377

    Google Scholar 

  • Feranec RS, DeSantis LRG (2014) Understanding specifics in generalist diets of carnivorans by analyzing stable carbon isotope values in Pleistocene mammals of Florida. Paleobiology 40(3):477–493.https://doi.org/10.1666/13055

    Article  Google Scholar 

  • Ferrusquía-Villafranca I, Pérez-Crespo VA, Ruiz-González JE et al (2018) The diet ofLeptomeryxsp. from the Late Eocene Yolomécatl Formation, NW Oaxaca, Sierra Madre del Sur Morphotectonic Province, SE México and its palaeoecological significance. Geol Mag 155(1):203–208.https://doi.org/10.1017/S0016756817000747

  • Fortelius M (1985) Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zool Fenn 180:1–76

    Google Scholar 

  • Fortelius M, Solounias N (2000) Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. Am Mus Novit 2000(3301):1–36.https://doi.org/10.1206/0003-0082(2000)301<0001:FCOUMU>2.0.CO;2

  • Fortelius M, Eronen J, Jernvall J et al (2002) Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evol Ecol Res 4(7):1005–1016

    Google Scholar 

  • Fortelius M, Žliobaitė I, Kaya F et al (2016) An ecometric analysis of the fossil mammal record of the Turkana Basin. Phil Trans R Soc B 371(1698):20150232.https://doi.org/10.1098/rstb.2015.0232

    Article  Google Scholar 

  • Franz-Odendaal TA, Kaiser TM (2003) Differential mesowear in the maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). Ann Zool Fenn 40(5):395–410

    Google Scholar 

  • Fraser D, Theodor JM (2010) The use of gross dental wear in dietary studies of extinct lagomorphs. J Paleontol 84(4):720–729.https://doi.org/10.1666/09-066.1

    Article  Google Scholar 

  • Fraser D, Zybutz T, Lightner E et al (2014) Ruminant mandibular tooth mesowear: a new scheme for increasing paleoecological sample sizes. J Zool 294(1):41–48.https://doi.org/10.1111/jzo.12149

    Article  Google Scholar 

  • Goillot C, Blondel C, Peigné S (2009) Relationships between dental microwear and diet in Carnivora (Mammalia)—implications for the reconstruction of the diet of extinct taxa. Palaeogeogr Palaeoclimatol Palaeoecol 271(1–2):13–23.https://doi.org/10.1016/j.palaeo.2008.09.004

    Article  Google Scholar 

  • Gómez-Pérez LE, Carbot-Chanona G (2018) Nota sobre un ejemplar inmaduro deGomphotherium sp. del Mioceno tardío de Chiapas, México. Rev Geol Amér Central (58):189–202.https://doi.org/10.15517/rgac.v58i0.32851

  • Green JL (2009a) Dental microwear in the orthodentine of the Xenarthra (Mammalia) and its use in reconstructing the palaeodiet of extinct taxa: the case study ofNothrotheriops shastensis (Xenarthra, Tardigrada, Nothrotheriidae). Zool J Linn Soc 156(1):201–222.https://doi.org/10.1111/j.1096-3642.2008.00486.x

    Article  Google Scholar 

  • Green JL (2009b) Intertooth variation of orthodentine microwear in armadillos (Cingulata) and tree sloths (Pilosa). J Mammal 90(3):768–778.https://doi.org/10.1644/08-MAMM-A-257R1.1

    Article  Google Scholar 

  • Green JL, Kalthoff DC (2015) Xenarthran dental microstructure and dental microwear analyses, with new data forMegatherium americanum (Megatheriidae). J Mammal 96(4):645–657.https://doi.org/10.1093/jmammal/gyv045

    Article  Google Scholar 

  • Green JL, Croft DA (2018) Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. In: Croft DA, Su DF, Simpson SW (eds) Methods in paleoecology: reconstructing Cenozoic terrestrial environments and ecological communities. Springer, Switzerland, pp 53–73

    Chapter  Google Scholar 

  • Green JL, Semprebon GM, Solounias N (2005) Reconstructing the palaeodiet of FloridaMammut americanum via low-magnification stereomicroscopy. Palaeogeogr Palaeoclimatol Palaeoecol 223(1–2):34–48.https://doi.org/10.1016/j.palaeo.2005.03.026

    Article  Google Scholar 

  • Griffith E (1827) Synopsis of the species of the class Mammalia, as arranged with reference to their organization by Cuvier and other naturalists. With specific characters, synonyma, &c. &c. Geo. B. Whittaker, London

    Google Scholar 

  • Grine FE (1986) Dental evidence for dietary differences inAustralopithecus andParanthropus: a quantitative analysis of permanent molar microwear. J Hum Evol 15(8):783–822.https://doi.org/10.1016/S0047-2484(86)80010-0

    Article  Google Scholar 

  • Guthrie RD (1990) Frozen fauna of the mammoth steppe: the story of Blue Babe. University of Chicago Press, Chicago

    Google Scholar 

  • Gutiérrez-Bedolla M, García-Zepeda ML, López-García R et al (2016) Diet and habitat ofMammuthus columbi (Falconer, 1857) from two Late Pleistocene localities in central western Mexico. Quat Int 406:137–146.https://doi.org/10.1016/j.quaint.2015.08.022

    Article  Google Scholar 

  • Hannold C, Wang Y, Wang X et al (2021) Isotopic evidence for mammalian diets and environment in Early Pliocene Yepómera, Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 578:110569.https://doi.org/10.1016/j.palaeo.2021.110569

    Article  Google Scholar 

  • Hernández-Fernández M (2001) Bioclimatic discriminant capacity of terrestrial mammal faunas. Global Ecol Biogeogr 10(2):189–204.https://doi.org/10.1046/j.1466-822x.2001.00218.x

    Article  Google Scholar 

  • Hernández-Fernández M, Peláez-Campomanes P (2003) The bioclimatic model: a method of palaeoclimatic qualitative inference based on mammal associations. Global Ecol Biogeogr 12(6):507–517.https://doi.org/10.1046/j.1466-822X.2003.00057.x

    Article  Google Scholar 

  • Hernández-Fernández M, Peláez-Campomanes P (2005) Quantitative palaeoclimatic inference based on terrestrial mammal faunas. Global Ecol Biogeogr 14(1):39–56.https://doi.org/10.1111/j.1466-822X.2004.00125.x

    Article  Google Scholar 

  • Higgins P (2018) Isotope Ecology from Biominerals. In: Croft DA, Su DF, Simpson SW (eds) Methods in paleoecology: reconstructing Cenozoic terrestrial environments and ecological communities. Springer, Switzerland, pp 99–120

    Chapter  Google Scholar 

  • Hurum JH, Chinsamy-Turan A (2012) The radiation, bone histology, and biology of early mammals. In: Chinsamy-Turan A (ed) Forerunners of mammals: radiation, histology, biology. Indiana University Press, Bloomington, pp 248–270

    Google Scholar 

  • Huttenlocker AK, Grossnickle DM, Kirkland JI et al (2018) Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature 558:108–112.https://doi.org/10.1038/s41586-018-0126-y

    Article CAS  Google Scholar 

  • Jiménez-Hidalgo E, Bravo-Cuevas VM (2021) Los mamíferos del Cenozoico oaxaqueño y su importancia paleobiológica. In: Guerrero-Arenas R, Jiménez-Hidalgo E, González-Rodríguez KA (eds) El patrimonio paleontológico y geológico de Oaxaca. Universidad del Mar, México, pp 139–159

    Google Scholar 

  • Jiménez-Hidalgo E, Carbot-Chanona G, Castañeda-Posadas C (2015) El registro de mamíferos fósiles de Puebla. In: Castañeda-Posadas C (ed) El registro paleobiológico del estado de Puebla. Benemérita Universidad Autónoma de Puebla, Escuela de Biología, Puebla de Zaragoza, México, pp 173–186

    Google Scholar 

  • Jiménez-Hidalgo E, Carbot-Chanona G, Guerrero-Arenas R et al (2019) Species diversity and paleoecology of late Pleistocene horses from southern Mexico. Front Ecol Evol 7(394):1–18.https://doi.org/10.3389/fevo.2019.00394

    Article  Google Scholar 

  • Jiménez-Hidalgo E, Lander EB, Israde-Alcántara I et al (2021) Earliest Arikareean (later early Oligocene) Iniyoo local Fauna from Chilapa formation of Santiago Yolomécatl area in northwestern Oaxaca, southern Mexico. J South Am Earth Sci 109:103307.https://doi.org/10.1016/j.jsames.2021.103307

    Article CAS  Google Scholar 

  • Jiménez-Hidalgo E, Guerrero-Arenas R, Crespo VD (2022) First galericine erinaceid (Mammalia: Eulipotyphla) from the early Oligocene of tropical North America. Hist Biol.https://doi.org/10.1080/08912963.2022.2070018

    Article  Google Scholar 

  • Jiménez-Manchón S, Blaise É, Albesso M et al (2022) Quantitative dental Mesowear analysis in domestic Caprids: a new method to reconstruct management strategies. J Archaeol Method Theory 29:540–560.https://doi.org/10.1007/s10816-021-09530-w

    Article  Google Scholar 

  • Kaiser TM (2011) Feeding ecology and niche partitioning of the Laetoli ungulate faunas. In: Harrison T (ed) Paleontology and geology of Laetoli: human evolution in context. Geology, Geochronology, Paleoecology and Paleoenvironment, vol 1. Springer, New York, pp 329–354

    Google Scholar 

  • Kaiser TM, Fortelius M (2003) Differential mesowear in occluding upper and lower molars: opening mesowear analysis for lower molars and premolars in hypsodont horses. J Morphol 258(1):67–83.https://doi.org/10.1002/jmor.10125

    Article  Google Scholar 

  • Kaiser TM, Solounias N (2003) Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25(2):321–345

    Google Scholar 

  • Kaiser TM, Solounias N, Fortelius M et al (2000) Tooth mesowear analysis onHippotherium primigenium from the Vallesian Dinotheriensande (Germany)—a blind test study. Carolinea Beitr Naturkd Forsch Suedwestdeutschl 58:103–114

    Google Scholar 

  • Kaiser TM, Brasch J, Castell JC et al (2009) Tooth wear in captive wild ruminant species differs from that of free-ranging conspecifics. Mamm Biol 74:425–437.https://doi.org/10.1016/j.mambio.2008.09.003

    Article  Google Scholar 

  • Kaiser TM, Müller DWH, Fortelius M et al (2013) Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mamm Rev 43(1):34–46.https://doi.org/10.1111/j.1365-2907.2011.00203.x

    Article  Google Scholar 

  • Kermack KA, Mussett F (1958) The jaw articulation of the Docodonta and the classification of Mesozoic mammals. Proc R Soc Lond B 149(935):204–215.https://doi.org/10.1098/rspb.1958.0063

    Article CAS  Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo ZX (2005) Mammals from the age of Dinosaurs: origins, evolution, and structure. Columbia University Press, New York

    Google Scholar 

  • King B, Beck RMD (2020) Tip dating supports novel resolutions of controversial relationships among early mammals. Proc R Soc Lond B 287:20200943.https://doi.org/10.1098/rspb.2020.0943

    Article  Google Scholar 

  • Koch PL (2007) Isotopic study of the biology of modern and fossil vertebrates. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Publishing Ltd., Oxford, pp 99–154

    Chapter  Google Scholar 

  • Koenigswald WV, Anders U, Engels S et al (2010) Tooth morphology in fossil and extant Lagomorpha (Mammalia) reflects different mastication patterns. J Mammal Evol 17:275–299.https://doi.org/10.1007/s10914-010-9140-z

  • Kovarovic K, Su DF, Lintulaakso K (2018) Mammal community structure analysis. In: Croft DA, Su DF, Simpson SW (eds) Methods in paleoecology: reconstructing Cenozoic terrestrial environments and ecological communities. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham, pp 351–372

    Google Scholar 

  • Kropacheva YE, Sibiryakov PA, Smirnov NG et al (2017) Variants of tooth mesowear inMicrotus voles as indicators of food hardness and abrasiveness. Russ J Ecol 48:73–80.https://doi.org/10.1134/S1067413616060096

    Article  Google Scholar 

  • Kühne WG (1958) Rhaetische Triconodonten aus Glamorgan, ihre Stellung zwischen den Klassen Reptilia und Mammalia und ihre Bedeutung für die REICHART’sche Theorie. Paläont Z 32:197–235.https://doi.org/10.1007/BF02989032

    Article  Google Scholar 

  • Lange IM (2002) Ice age mammals of North America: a guide to the big, the hairy, and the bizarre. Mountain Press Publishing, Montana

    Google Scholar 

  • Lee-Thorp JA, van der Merwe NJ (1987) Carbon isotope analysis of fossil bone apatite. S Afr J Sci 83(11):712–715

    Google Scholar 

  • Lee-Thorp JA, Sealy JC, van der Merwe NJ (1989) Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J Archaeol Sci 16(6):585–599

    Article  Google Scholar 

  • Lillegraven JA (1974) Biogeographical considerations of the marsupial-placental dichotomy. Annu Rev Ecol Syst 5:263–283.https://doi.org/10.1146/annurev.es.05.110174.001403

    Article  Google Scholar 

  • Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata, vol. 1. Laurentius Salvius: Holmiae.

    Google Scholar 

  • Loffredo LF, DeSantis LRG (2014) Cautionary lessons from assessing dental mesowear observer variability and integrating paleoecological proxies of an extreme generalistCormohipparion emsliei. Palaeogeogr Palaeoclimatol Palaeoecol 395:42–52.https://doi.org/10.1016/j.palaeo.2013.12.020

    Article  Google Scholar 

  • Luo ZX (2007) Transformation and diversification in early mammal evolution. Nature 450:1011–1019.https://doi.org/10.1038/nature06277

    Article CAS  Google Scholar 

  • Luo ZX, Cifelli RL, Kielan-Jaworowska Z (2001) Dual origin of tribosphenic mammals. Nature 409:53–57.https://doi.org/10.1038/35051023

    Article CAS  Google Scholar 

  • Luo ZX, Ji Q, Yuan CX (2007) Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450:93–97.https://doi.org/10.1038/nature06221

    Article CAS  Google Scholar 

  • Luo ZX, Yuan CX, Meng QJ et al (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476:442–445.https://doi.org/10.1038/nature10291

    Article CAS  Google Scholar 

  • Lyman RL (1994) Vertebrate taphonomy (Cambridge manuals in archaeology). Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Macfadden BJ, Cerling TE (1996) Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. J Vertebr Paleontol 16(1):103–115.https://doi.org/10.1080/02724634.1996.10011288

    Article  Google Scholar 

  • Maier W, Ruf I (2016) Evolution of the mammalian middle ear: a historical review. J Anat 228(2):270–283.https://doi.org/10.1111/joa.12379

    Article  Google Scholar 

  • Marín-Leyva AH, DeMiguel D, García-Zepeda ML et al (2016) Dietary adaptability of Late PleistoceneEquus from West Central Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 441:748–757.https://doi.org/10.1016/j.palaeo.2015.10.019

    Article  Google Scholar 

  • Marín-Leyva AH, Mainou L, Pérez-Crespo VA et al (2021) The life story of a gomphothere from east-central Mexico: a multidisciplinary approach. J South Am Earth Sci 111:103442.https://doi.org/10.1016/j.jsames.2021.103442

    Article CAS  Google Scholar 

  • Marín-Leyva AH, Delgado-García S, García-Zepeda ML et al (2022) Environmental inferences based on the dietary ecology of camelids from west-central Mexico during the Late Pleistocene. Hist Biol.https://doi.org/10.1080/08912963.2022.2073822

    Article  Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of Mammals: above the species level. Columbia University Press, New York

    Google Scholar 

  • Mihlbachler MC, Solounias N (2006) Coevolution of tooth crown height and diet in oreodonts (Merycoidodontidae, Artiodactyla) examined with phylogenetically independent contrasts. J Mammal Evol 13:11–36.https://doi.org/10.1007/s10914-005-9001-3

    Article  Google Scholar 

  • Mihlbachler MC, Rivals F, Solounias N et al (2011) Dietary change and evolution of horses in North America. Science 331(6021):1178–1181.https://doi.org/10.1126/science.1196166

    Article CAS  Google Scholar 

  • Mihlbachler MC, Beatty BL, Caldera-Siu A et al (2012) Error rates and observer bias in dental microwear analysis using light microscopy. Palaeontol Electron 15(1.12A):1–22

    Google Scholar 

  • Montellano-Ballesteros M (2015) Síntesis sobre el registro fósil de los mamíferos mesozoicos mexicanos. Bol Geol Min 126(1):7–20

    Google Scholar 

  • Montellano-Ballesteros M, Jiménez-Hidalgo E (2006) Mexican fossil mammals, who, where and when? In: Vega FJ, Nyborg TG, Perrillat MC, Montellano-Ballesteros M, Cevallos-Ferriz SRS, Quiroz-Barroso SA (eds) Studies on Mexican paleontology. Topics in geobiology, vol 24. Springer, Dordrecht, pp 249–273

    Google Scholar 

  • Murray CG, Sanson GD (1998) Thegosis—a critical review. Aust Dent J 43(3):192–198.https://doi.org/10.1111/j.1834-7819.1998.tb00164.x

    Article CAS  Google Scholar 

  • Nelson S, Badgley C, Zakem E (2005) Microwear in modern squirrels in relation to diet. Palaeontol Electron 8(1.14A):1–15

    Google Scholar 

  • Nowak RM, Paradiso JL (1983) Walker’s mammals of the world. The Johns Hopkins University Press, Baltimore, London

    Google Scholar 

  • Nunez EE, Macfadden BJ, Mead JI et al (2010) Ancient forests and grasslands in the desert: diet and habitat of Late Pleistocene mammals from Northcentral Sonora, Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 297(2):391–400.https://doi.org/10.1016/j.palaeo.2010.08.021

    Article  Google Scholar 

  • Pérez-Crespo VA, Sánchez-Chillón B, Arroyo-Cabrales J et al (2009) La dieta y el hábitat del mamut y los caballos del Pleistoceno tardío de El Cedral con base en isótopos estables (δ13C, δ18O). Rev Mex Cienc Geol 26(2):347–355

    Google Scholar 

  • Pérez-Crespo VA, Arroyo-Cabrales J, Benammi M et al (2010) Carbon isotopic values of tooth enamel ofMammuthus columbi from Tocuila, State of México, México. Curr Res Pleisto 27:188–190

    Google Scholar 

  • Pérez-Crespo VA, Arroyo-Cabrales J, Benammi M et al (2012a) Geographic variation of diet and habitat of the Mexican populations of Columbian Mammoth (Mammuthus columbi). Quat Int 276–277: 8–16

    Google Scholar 

  • Pérez-Crespo VA, Arroyo-Cabrales J, Alva-Valdivia LM et al (2012b) Diet and habitat definitions for Mexican glyptodonts from Cedral (San Luis Potosí, México) based on stable isotope analysis. Geol Mag 149(1):153–157.https://doi.org/10.1017/S0016756811000951

  • Pérez-Crespo VA, Arroyo-Cabrales J, Alva-Valdivia LM et al (2012c) Datos isotópicos (δ13C, δ18O) de la fauna pleistocénica de la Laguna de las Cruces, San Luis Potosí, México. Rev Mex Cienc Geol 29(2):299–307

    Google Scholar 

  • Pérez-Crespo VA, Arroyo-Cabrales J, Benammi M et al (2013a) Variación de la dieta del mamut de las praderas de Laguna de las Cruces, San Luis Potosí, Mexico. Bol Soc Geol Mex 65(3):573–580

    Article  Google Scholar 

  • Pérez-Crespo VA, Rodríguez J, Arroyo-Cabrales J et al (2013b) Variación ambiental durante el Pleistoceno Tardío y Holoceno Temprano en Guilá Naquitz (Oaxaca, México). Rev Bras Paleontol 16(3):487–494.https://doi.org/10.4072/rbp.2013.3.08

    Article  Google Scholar 

  • Pérez-Crespo VA, Arroyo-Cabrales J, Alva-Valdivia LM et al (2014) La paleodieta de cinco especies de mamíferos herbívoros rancholabreanos de Valsequillo (Puebla, México). Rev Chil Antropol 30:76–82

    Google Scholar 

  • Pérez-Crespo VA, Carbot-Chanona G, Morales-Puente P et al (2015) Paleoambiente de la Depresión Central de Chiapas, con base en isótopos estables de carbono y oxígeno. Rev Mex Cienc Geol 32(2):273–282

    Google Scholar 

  • Pérez-Crespo VA, Arroyo-Cabrales J, Alva-Valdivia LM et al (2016a) Inferences of feeding habits of Late PleistoceneEquus sp. from eight Mexican localities. Neues Jahrb Geol Palaeontol Abh 279(1):107–121.https://doi.org/10.1127/njgpa/2016/0544

  • Pérez-Crespo VA, Ferrusquía-Villafranca I, Bravo-Cuevas VM et al (2016b) Dietary analysis of Late Cenozoic Mexican equids from three different geographic/geologic settings using stable carbon isotopes: coincidences, differences and paleobiologic significance. J South Am Earth Sci 66:97–109.https://doi.org/10.1016/j.jsames.2015.11.015

  • Pérez-Crespo VA, Barrón-Ortiz CR, Arroyo-Cabrales J et al (2016c) Preliminary data on the diet and habitat preferences ofCapromeryx mexicana (Mammalia: Antilocapridae) from the late Pleistocene of Cedral, San Luis Potosí, Mexico. Southwest Nat 61(2):152–155.https://doi.org/10.1894/0038-4909-61.2.152

  • Pérez-Crespo VA, Carranza-Castañeda O, Arroyo-Cabrales J et al (2017a) Diet and habitat of unique individuals ofDinohippus mexicanus andNeohipparion eurystyle (Equidae) from the late Hemphillian (Hh3) of Guanajuato and Jalisco, central Mexico: stable isotope studies. Rev Mex Cienc Geol 34(1):38–44

    Google Scholar 

  • Pérez-Crespo VA, Arroyo-Cabrales J, Morales-Puente P et al (2017b) Preliminary paleodiet of a specimen of the Pliocene rhinoceros (Teleoceras fossiger) from Michoacán, México. Southwest Nat 62(3):232–234.https://doi.org/10.1894/0038-4909-62.3.232

  • Pérez-Crespo VA, Arroyo-Cabrales J, Morales-Puente P et al (2018) Diet and habitat of mesomammals and megamammals from Cedral, San Luis Potosí, México. Geol Mag 155(3):674–684.https://doi.org/10.1017/S0016756816000935

  • Pérez-Crespo VA, Arroyo-Cabrales J, Guzmán AF et al (2020) Isotopic paleoecology of a toxodont (Mixotoxodon larensis) from Michoacan, Mexico. Southwest Nat 64(1):63–66.https://doi.org/10.1894/0038-4909-64-1-63

    Article  Google Scholar 

  • Pérez-Crespo VA, Bravo-Cuevas VM, Arroyo-Cabrales J (2022) Feeding habits ofEquus conversidens andHaringtonhippus franciscifrom Valsequillo, Puebla, México. Hist Biol 34(7):1252–1259.https://doi.org/10.1080/08912963.2021.1973452

  • Polly PD, Head J (2015) Measuring Earth-Life transitions: ecometric analysis of functional traits from Late Cenozoic vertebrates. Paleontol Soc Papers 21:21–46.https://doi.org/10.1017/S1089332600002953

    Article  Google Scholar 

  • Polly PD, Sarwar S (2014) Extinction, extirpation, and exotics: effects on the correlation between traits and environment at the continental level. Ann Zool Fenn 51(1–2):209–226.https://doi.org/10.5735/086.051.0221

    Article  Google Scholar 

  • Prado JL, Sánchez B, Alberdi MT (2011) Ancient feeding ecology inferred from stable isotopic evidence from fossil horses in South America over the past 3 Ma. BMC Ecol 11:1–15.https://doi.org/10.1186/1472-6785-11-15

    Article  Google Scholar 

  • Prothero DR (2006) After the dinosaurs. The age of mammals. Indiana University Press, Bloomington

    Google Scholar 

  • Rauhut OWM, Martin T, Ortiz-Jaureguizar E et al (2002) A Jurassic mammal from South America. Nature 416:165–168.https://doi.org/10.1038/416165a

    Article CAS  Google Scholar 

  • Reed CA (1960) Polyphyletic or monophyletic ancestry of mammals, or: what is a class? Evolution 14(3):314.https://doi.org/10.2307/2405974

    Article  Google Scholar 

  • Rensberger JM (1978) Scanning electron microscopy of wear and occlusal events in some small herbivores. In: Butler PM, Joysey KA (eds) Development, function and evolution of teeth. Academic Press, New York, pp 415–438

    Google Scholar 

  • Rivals F, Semprebon GM (2006) A comparison of the dietary habits of a large sample of the Pleistocene pronghornStockoceros onusrosagris from the Papago Springs Cave in Arizona to the modernAntilocapra americana. J Vertebr Paleontol 26(2):495–500.https://doi.org/10.1671/0272-4634(2006)26[495:ACOTDH]2.0.CO;2

    Article  Google Scholar 

  • Rivals F, Solounias N, Mihlbachler MC (2007) Evidence for geographic variation in the diets of late Pleistocene and early HoloceneBison in North America, and differences from the diets of recentBison. Quat Res 68(3):338–346.https://doi.org/10.1016/j.yqres.2007.07.012

    Article  Google Scholar 

  • Rowe T (1988) Definition, diagnosis, and origin of mammalia. J Vertebr Paleontol 8(3):241–264.https://doi.org/10.1080/02724634.1988.10011708

    Article  Google Scholar 

  • Ruez DR (2005) Diet of PleistoceneParamylodon harlani (Xenarthra: Mylodontidae): review of methods and preliminary use of carbon isotopes. Texas J Sci 57(4):329–344

    Google Scholar 

  • Ryan AS (1979) Wear striation direction on primate teeth: a scanning electron microscope examination. Am J Phys Anthropol 50(2):155–167.https://doi.org/10.1002/ajpa.1330500204

    Article CAS  Google Scholar 

  • Ryan AS (1981) Anterior dental microwear and its relationship to diet and feeding behavior in three african primates (Pan troglodytes troglodytes,Gorilla gorilla gorilla, andPapio hamadryas). Primates 22(4):533–550.https://doi.org/10.1007/BF02381245

    Article  Google Scholar 

  • Saarinen J, Karme A (2017) Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra)—applying a new mesowear approach. Palaeogeogr Palaeoclimatol Palaeoecol 476:42–54.https://doi.org/10.1016/j.palaeo.2017.03.027

    Article  Google Scholar 

  • Saarinen J, Karme A, Cerling T et al (2015) A new tooth wear-based dietary analysis method for Proboscidea (Mammalia). J Vertebr Paleontol 35(3):e918546.https://doi.org/10.1080/02724634.2014.918546

    Article  Google Scholar 

  • Sánchez-Cordero VS, Botello F, Flores-Martínez JJ et al (2014) Biodiversidad de Chordata (Mammalia) en México. Rev Mex Biodiv 85:496–504.https://doi.org/10.7550/rmb.31688

    Article  Google Scholar 

  • Schap JA, Samuels JX, Joyner TA (2021) Ecometric estimation of present and past climate of North America using crown heights of rodents and lagomorphs. Palaeogeogr Palaeoclimatol Palaeoecol 562:110144.https://doi.org/10.1016/j.palaeo.2020.110144

    Article  Google Scholar 

  • Semprebon GM, Godfrey LR, Solounias N et al (2004) Can low-magnification stereomicroscopy reveal diet? J Hum Evol 47(3):115–144.https://doi.org/10.1016/j.jhevol.2004.06.004

    Article  Google Scholar 

  • Semprebon GM, Rivals F, Janis CM (2019) The role of grass versus exogenous abrasives in the paleodietary patterns of North American ungulates. Front Ecol Evol 7:65.https://doi.org/10.3389/fevo.2019.00065

    Article  Google Scholar 

  • Sereno PC (2005) The logical basis of phylogenetic taxonomy. Syst Biol 54(4):595–619.https://doi.org/10.1080/106351591007453

    Article  Google Scholar 

  • Shaw G (1799)Platypus anatinus. The duck-billedPlatypus. Nat Miscellany 10(118):7

    Google Scholar 

  • Short RA, Lawing AM (2021) Geography of artiodactyl locomotor morphology as an environmental predictor. Divers Distrib 27(9):1818–1831.https://doi.org/10.1111/ddi.13371

    Article  Google Scholar 

  • Short RA, Pinson K, Lawing AM (2020) Comparison of environmental inference approaches for ecometric analyses: using hypsodonty to estimate precipitation. Ecol Evol 11(1):587–598.https://doi.org/10.1002/ece3.7081

    Article  Google Scholar 

  • Simpson GG (1959) Mesozoic mammals and the polyphyletic origin of mammals. Evolution 13(3):405–414.https://doi.org/10.2307/2406116

    Article  Google Scholar 

  • Solounias N, Semprebon GM (2002) Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. Am Mus Novit 3366:1–49.https://doi.org/10.1206/0003-0082(2002)366%3c0001:AITROU%3e2.0.CO;2

    Article  Google Scholar 

  • Solounias N, Tariq M, Hou S et al (2014) A new method of tooth mesowear and a test of it on domestic goats. Ann Zool Fenn 51(1–2):111–118.https://doi.org/10.5735/086.051.0212

    Article  Google Scholar 

  • Sues HD, Fraser NC (2010) Triassic life on land: the great transition. Columbia University Press, New York

    Google Scholar 

  • Sulzman EW (2007) Stable isotope chemistry and measurement: a primer. In: Michener R, Lajtha K (eds) Stable isotopes in Ecology and environmental science. Blackwell Publishers, Oxford, pp 1–21

    Google Scholar 

  • Taylor LA, Kaiser TM, Schwitzer C et al (2013) Detecting inter-cusp and inter-tooth wear patterns in rhinocerotids. PLoS ONE 8(12):e80921.https://doi.org/10.1371/journal.pone.0080921

    Article CAS  Google Scholar 

  • Teaford MF, Walker A (1984) Quantitative differences in dental microwear between primate species with different diets and a comment on the presumed diet ofSivapithecus. Am J Phys Anthropol 64(2):191–200.https://doi.org/10.1002/ajpa.1330640213

    Article CAS  Google Scholar 

  • Tomé CP, Elliott-Smith EA, Lyons SK et al (2020) Changes in the diet and body size of a small herbivorous mammal (hispid cotton rat,Sigmodon hispidus) following the late Pleistocene megafauna extinction. Ecography 43(4):604–619.https://doi.org/10.1111/ecog.04596

    Article  Google Scholar 

  • Townsend KEB, Croft DA (2008) Enamel microwear in caviomorph rodents. J Mammal 89(3):730–743.https://doi.org/10.1644/06-MAMM-A-336R1.1

    Article  Google Scholar 

  • Turner A, Antón M (2004) Evolving Eden: an illustrated guide to the evolution of the African large-mammal fauna. Columbia University Press, New York

    Google Scholar 

  • Ulbricht A, Maul LC, Schulz E (2015) Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. Mamm Biol 80:14–20.https://doi.org/10.1016/j.mambio.2014.06.004

    Article  Google Scholar 

  • Ungar PS, Scott RS, Scott JR et al (2008) Dental microwear analysis: historical perspectives and new approaches. In: Irish JD, Nelson GC (eds) Technique and application in dental anthropology. Cambridge University Press, Cambridge, pp 389–425

    Chapter  Google Scholar 

  • Vermillion WA, Polly PD, Head JJ et al (2018) Ecometrics: a trait-based approach to paleoclimate and paleoenvironmental reconstruction. In: Croft DA, Su DF, Simpson SW (eds) Methods in paleoecology: reconstructing Cenozoic Terrestrial environment ans ecological communities. Springer, Cham, pp 371–392

    Google Scholar 

  • Walker PL (1976) Wear striations on the incisors of Ceropithecid monkeys as an index of diet and habitat preference. Am J Phys Anthropol 45(2):299–307.https://doi.org/10.1002/ajpa.1330450215

    Article CAS  Google Scholar 

  • Walker A, Hoeck HN, Perez L (1978) Microwear of mammalian teeth as an indicator of diet. Science 201(4359):908–910.https://doi.org/10.1126/science.684415

    Article CAS  Google Scholar 

  • Walter H (1970) Vegetationszonen und Klima. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Walter H, Breckle SW (1986) Ecological systems of the geobiosphere: 2 tropical and subtropical Zonobiomes. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Wang H, Meng J, Wang Y (2019) Cretaceous fossil reveals a new pattern in mammalian middle ear evolution. Nature 576:102–105.https://doi.org/10.1038/S41586-019-1792-0

    Article CAS  Google Scholar 

  • Widga C (2006) Niche variability in late Holocene bison: a perspective from Big Bone Lick, KY. J Archaeolog Sci 33(9):1237–1255.https://doi.org/10.1016/J.JAS.2005.12.011

    Article  Google Scholar 

  • Williamson TE, Brusatte SL, Wilson GP (2014) The origin and early evolution of metatherian mammals: the Cretaceous record. ZooKeys 465:1–76.https://doi.org/10.3897/zookeys.465.8178

    Article  Google Scholar 

  • Winkler DE, Kaiser TM (2011) A case study of seasonal, sexual and ontogenetic divergence in the feeding behaviour of the moose (Alces alces Linné, 1758). Verh Naturwiss Ver Hamburg 46:331–348

    Google Scholar 

  • Wolf D, Semprebon GM, Bernor RL (2012) New observations on the paleodiet of the late Miocene Höwenegg (Hegau, Germany)Hippotherium primigenium (Mammalia, Equidae). Boll Soc Paleontol Ital 51(3):185–191.https://doi.org/10.4435/BSPI.2012.21

    Article  Google Scholar 

  • Zhang FK, Cui GH (1983) New material and new understanding ofSinoconodon. Vertebrata PalAsiatica 21(1):32–41

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratorio de Paleobiología, Instituto de Recursos, Universidad del Mar, Puerto Escondido, Oaxaca, México

    Eduardo Jiménez-Hidalgo

  2. Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de Mexico, Morelia, Michoacán, México

    Roberto Díaz-Sibaja

  3. Museo de Paleontología, Área Académica de Biología, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto, Hidalgo, México

    Victor Bravo-Cuevas

Authors
  1. Eduardo Jiménez-Hidalgo

    You can also search for this author inPubMed Google Scholar

  2. Roberto Díaz-Sibaja

    You can also search for this author inPubMed Google Scholar

  3. Victor Bravo-Cuevas

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toEduardo Jiménez-Hidalgo.

Editor information

Editors and Affiliations

  1. Universidad del Mar, Puerto Escondido, Mexico

    Rosalía Guerrero-Arenas

  2. Universidad del Mar, Puerto Escondido, Mexico

    Eduardo Jiménez-Hidalgo

Rights and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiménez-Hidalgo, E., Díaz-Sibaja, R., Bravo-Cuevas, V. (2024). Mammals as Paleoenvironmental Proxies. In: Guerrero-Arenas, R., Jiménez-Hidalgo, E. (eds) Past Environments of Mexico. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-031-51034-2_13

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 15729
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp