Part of the book series:Springer Geology ((SPRINGERGEOL))
506Accesses
Abstract
Mammals can be defined as the least inclusive clade containingOrnithorhynchus anatinus (Shaw in Nat Miscellany 10(118):7,1799) andHomosapiens Linnaeus,1758. Mexico is the third country with the highest mammalian species richness in the world. Their fossil record in this megadiverse country spans from the Early Jurassic to the Late Pleistocene. Research of fossil mammals have been centered on taxonomy and until recently, some paleoecological and paleoenvironmental reconstructions have been published. In this chapter, some of the techniques of paleoenvironmental reconstruction based on fossil mammals are described (microwear, mesowear, stable isotope analysis, bioclimatic models, ecometric analyses, and mutual ecogeographic range) and some examples of their use with the Mexican record are provided. The extensive fossil record available for some geological epochs makes the Mexican mammals a rich source of paleoenvironmental data that needs to be further explored.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 12583
- Price includes VAT (Japan)
- Softcover Book
- JPY 11439
- Price includes VAT (Japan)
- Hardcover Book
- JPY 15729
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ackermans NL (2020) The history of mesowear: a review. PeerJ 8:e8519.https://doi.org/10.7717/PEERJ.8519/SUPP-2
Aguilar-Tomasini MA, Martin MD, Speed JDM (2021) Assessing spatial patterns of phylogenetic diversity of Mexican mammals for biodiversity conservation. Glob Ecol Conserv 31(2021):1–10.https://doi.org/10.1016/j.gecco.2021.e01834
Arroyo-Cabrales J, Polaco OJ, Johnson E (2005) La mastofauna del Cuaternario tardío de México. Instituto Nacional de Antropología e Historia, Subdirección de Laboratorios y Apoyo Académico. Final report SNIBCONABIO proyecto No. G012. México. Retrieved 2022 February 28.http://www.conabio.gob.mx/institucion/proyectos/resultados/InfG012.pdf
Barnosky AD (1989) The Late Pleistocene event as a paradigm for widespread mammal extinction. In: Donovan SK (ed) Mass extinctions: processes and evidence. Belhaven Press, London, pp 235–254
Barnosky AD, Lindsey EL (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat Int 217(1–2):10–29
Barrón-Ortíz CR, Theodor JM, Arroyo-Cabrales J (2014) Dietary resource partitioning in the Late Pleistocene horses from Cedral, north-central Mexico: evidence from the study of dental wear. Rev Mex Cienc Geol 31(2):260–269
Behrensmeyer AK, Hook RW (1992) Paleoenvironmental contexts and taphonomic modes. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues HD, Wing SL (eds) Terrestrial ecosystems through time. Evolutionary Paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago, pp 15–136
Ben-David M, Flaherty EA (2012) Stable isotopes in mammalian research: a beginner’s guide. J Mammal 93(2):312–328.https://doi.org/10.1644/11-MAMM-S-166.1
Bininda-Emonds ORP, Cardillo M, Jones KE et al (2007) The delayed rise of present-day mammals. Nature 446(7135):507–512.https://doi.org/10.1038/nature05634
Blain HA, Bailon S, Cuenca-Bescós G et al (2009) Long-term climate record inferred from early-middle Pleistocene amphibian and squamate reptile assemblages at the Gran Dolina Cave, Atapuerca, Spain. J Hum Evol 56(1):55–65.https://doi.org/10.1016/j.jhevol.2008.08.020
Boardman GS, Secord R (2013) Stable isotope paleoecology of White River ungulates during the Eocene-Oligocene climate transition in northwestern Nebraska. Palaeogeogr Palaeoclimatol Palaeoecol 375:38–49.https://doi.org/10.1016/j.palaeo.2013.02.010
Bocherens H, Cotte M, Bonini RA et al (2017) Isotopic insight on paleodiet of extinct Pleistocene megafaunal xenarthrans from Argentina. Gondwana Res 48:7–14.https://doi.org/10.1016/j.gr.2017.04.003
Bradham JL, DeSantis LRG, Jorge MLS et al (2018) Dietary variability of extinct tayassuids and modern white-lipped peccaries (Tayassu pecari) as inferred from dental microwear and stable isotope analysis. Palaeogeogr Palaeoclimatol Palaeoecol 499:93–101.https://doi.org/10.1016/j.palaeo.2018.03.020
Bravo-Cuevas VM, Priego-Vargas J (2009) Dietary evaluation of a hipparionin horse population from the middle Miocene of Oaxaca, southeastern Mexico. Rev Mex Cienc Geol 26(2):356–366
Bravo-Cuevas VM, Jiménez-Hidalgo E (2015) First reported occurrence ofPalaeolama mirifica (Camelidae, Lamini) from the Late Pleistocene (Rancholabrean) of Puebla, central Mexico. Bol Soc Geol Mex 67(1):13–20
Bravo-Cuevas VM, Jiménez-Hidalgo E (2018) Advances on the paleobiology of late Pleistocene mammals from central and southern Mexico. In: Huard G, Gareau J (eds) The Pleistocene: Geography, Geology, and Fauna. Nova Science Publishers, New York, pp 277–313
Bravo-Cuevas VM, Jiménez-Hidalgo E, Priego-Vargas J (2011) Taxonomía y hábito alimentario deEquus conversidens (Perissodactyla, Equidae) del Pleistoceno Tardío (Rancholabreano) de Hidalgo, centro de México. Rev Mex Cienc Geol 28(1):65–82
Bravo-Cuevas VM, Morales-García NM, Cabral-Perdomo MA (2015a) Description of mastodons (Mammut americanum) from the late Pleistocene of southeastern Hidalgo, central Mexico. Bol Soc Geol Mex 67(2):337–347
Bravo-Cuevas VM, Priego-Vargas J, Jiménez-Hidalgo E et al (2015b) Feeding ecology ofAstrohippus stockii from the late Hemphillian of central Mexico: stable carbon isotopes analysis and dental wear patterns. Ameghiniana 52(5):502–516.https://doi.org/10.5710/AMGH.21.05.2015.2900
Bravo-Cuevas VM, Arroyo-Cabrales J, Priego-Vargas J (2016) The record of camelids (Artiodactyla, Camelidae) from the Valsequillo basin, late Pleistocene of Puebla state, central Mexico: taxonomy, diet, and geographic distribution. Rev Bras Paleontol 19(2):243–258.https://doi.org/10.4072/rbp.2016.2.08
Bravo-Cuevas VM, Rivals F, Priego-Vargas J (2017) Paleoecology (δ13C and δ18O stable isotopes analysis) of a mammalian assemblage from the late Pleistocene of Hidalgo, central Mexico and implications for a better understanding of environmental conditions in temperate North America (18°–36°N Lat.). Palaeogeogr Palaeoclimatol Palaeoecol 485(1):632–643.https://doi.org/10.1016/j.palaeo.2017.07.018
Bravo-Cuevas VM, Ortiz-Caballero E, Jiménez-Hidalgo E et al (2020) Taxonomía y hábito alimentario de ejemplares deMammuthus columbi (Proboscidea: Elephantidae) del centro y sur de México. Bol Soc Geol Mex 72(1):e141019.https://doi.org/10.18268/bsgm2020v72n1a141019
Broughton JM, Weitzel EM (2018) Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat Commun 9(1):5441
Burgin CJ, Colella JP, Kahn PL et al (2018) How many species of mammals are there? J Mammal 99(1):1–14.https://doi.org/10.1093/jmammal/gyx147
Butler K, Louys J, Travouillon K (2014) Extending dental mesowear analyses to Australian marsupials, with applications to six Plio-Pleistocene kangaroos from southeast Queensland. Palaeogeogr Palaeoclimatol Palaeoecol 408:11–25.https://doi.org/10.1016/j.palaeo.2014.04.024
Calandra I, Merceron G (2016) Dental microwear texture analysis in mammalian ecology. Mamm Rev 46(3):215–228.https://doi.org/10.1111/mam.12063
Carbot-Chanona G (2021)Teleocerasy cf.Peraceras (Perissodactyla, Rhinocerotidae) en el Mioceno tardío de Chiapas, México. Lum 2(1):18–29
Carbot-Chanona G, Lagunas-Rodríguez Z, Jiménez-Moreno FJ et al (2017) Aspectos paleobiológicos de dos ejemplares deMammuthus columbi (Mammalia, Proboscidea, Elephantidae) del Pleistoceno de Puebla, centro de México. Bol Soc Geol Mex 69(3):591–609.https://doi.org/10.18268/bsgm2017v69n3a5
Carranza-Castañeda O (2006) Late Tertiary fossil localities in central Mexico between 19°–23°N. In: Carranza-Castañeda O, Lindsay EH (eds) Advances in late Tertiary vertebrate paleontology in Mexico and the Great American Biotic Interchange. Universidad Nacional Autónoma de México, Instituto de Geología and Centro de Geociencias, Publicación Especial, México, pp 45–60
Carranza-Castañeda O (2019)Dinohippus mexicanus (Early-Late, Late, and Latest Hemphillian) and the transition to genusEquus, in Central Mexico Faunas. Front Earth Sci 7:89.https://doi.org/10.3389/feart.2019.00089
Carranza-Castañeda O, Jiménez-Hidalgo E (2021) Pliocene Antilocapridae (Mammalia: Artiodactyla) from San Miguel de Allende, Guanajuato, central Mexico. J South Am Earth Sci 112(1):103571.https://doi.org/10.1016/j.jsames.2021.103571
Carranza-Castañeda O, Aranda-Gómez JJ, Wang X et al (2013) The early late Hemphillian (Hh2) faunal assemblage from Juchipila basin, state of Zacatecas, Mexico and its biostratigraphic correlation with other Hemphillian faunas in central Mexico. Contrib Sci 521(1):13–49
Cersoy S, Zazzo A, Lebon M et al (2017) Collagen extraction and stable isotope analysis of small vertebrate bones: a comparative approach. Radiocarbon 59(3):679–694.https://doi.org/10.1017/RDC.2016.82
Cervantes-Barriga R, Marín-Leyva AH, García-Zepeda ML et al (2021) Taxonomy, diet and geographical provenance of fossil species ofSigmodon from west central Mexico during the late Pleistocene. PalZ 95:145–161.https://doi.org/10.1007/s12542-020-00512-z
Christensen HB (2014) Similar associations of tooth microwear and morphology indicate similar diet across marsupial and placental mammals. PLoS ONE 9(8):e102789.https://doi.org/10.1371/journal.pone.0102789
Clementz MT (2012) New insight from old bones: stable isotope analysis of fossil mammals. J Mammal 93(2):368–380.https://doi.org/10.1644/11-MAMM-S-179.1
Croft DA, Weinstein D (2008) The first application of the mesowear method to endemic South American ungulates (Notoungulata). Palaeogeogr Palaeoclimatol Palaeoecol 269(1–2):103–114.https://doi.org/10.1016/j.palaeo.2008.08.007
Cruz JA, Arroyo-Cabrales J, Reynoso VH (2016) Reconstructing the paleoenvironment of Loltún Cave, Yucatán, Mexico, with Pleistocene amphibians and reptiles and their paleobiogeographic implications. Rev Mex Cienc Geol 33(3):342–354
Cruz JA, Alarcón-D I, Figueroa-Castro DM et al (2021) Fossil pigmy rattlesnake inside the mandible of an American mastodon and use of fossil reptiles for the paleoclimatic reconstruction of a Pleistocene locality in Puebla, Mexico. Quat Int 574:116–126.https://doi.org/10.1016/j.quaint.2020.10.058
Czerwonogora A, Fariña RA, Tonni EP (2011) Diet and isotopes of Late Pleistocene ground sloths: first results forLestodon andGlossotherium (Xenarthra, Tardigrada). N Jb Geol Paläont Abh 262(3):257–266
Damuth J, Janis CM (2014) A comparison of observed molar wear rates in extant herbivorous mammals. Ann Zool Fenn 51(1–2):188–200.https://doi.org/10.5735/086.051.0219
Danowitz M, Hou S, Mihlbachler M et al (2016) A combined-mesowear analysis of late Miocene giraffids from North Chinese and Greek localities of the Pikermian Biome. Palaeogeogr Palaeoclimatol Palaeoecol 449:194–204.https://doi.org/10.1016/j.palaeo.2016.02.026
DeSantis LRG (2016) Dental microwear textures: reconstructing diets of fossil mammals. Surf Topogr Metrol Prop 4(2):023002.https://doi.org/10.1088/2051-672X/4/2/023002
DeSantis LRG, Scott JR, Schubert BW et al (2013) Direct comparisons of 2D and 3D dental microwear proxies in extant herbivorous and carnivorous mammals. PLoS ONE 8(8):e71428.https://doi.org/10.1371/journal.pone.0071428
DeSantis LRG, Crites JM, Feranec RS et al (2019) Causes and consequences of pleistocene megafaunal extinctions as revealed from Rancho La Brea mammals. Curr Biol 29(15):2488–2495.https://doi.org/10.1016/j.cub.2019.06.059
Díaz-Sibaja R, Jiménez-Hidalgo E, García-Zepeda ML (2018a) Una nueva localidad fosilífera en Oaxaca (México) y el registro más austral deBison latifrons. Implicaciones paleobiogeográficas, paleoecológicas y paleoambientales. Bol Soc Geol Mex 70(1):201‒222.https://doi.org/10.18268/bsgm2018v70n1a12
Díaz-Sibaja R, Jiménez-Hidalgo E, Ponce-Saavedra J et al (2018b) A combined mesowear analysis of MexicanBison antiquus shows a generalist diet with geographical variation. J Paleontol 92(6):1130–1139.https://doi.org/10.1017/jpa.2018.19
Eronen JT, Puolamäki K, Liu L et al (2010) Precipitation and large herbivorous mammals I: estimates from present-day communities. Evol Ecol Res 12:217–233
Every RG (1970) Sharpness of teeth in man and other primates. Postilla 143:1–30
Every RG, Kühne WG (1971) Biomodal wear of mammalian teeth. In: Kermack DM, Kermack KA (eds) Early mammals. Academic Press, London, pp 23–27
Faith JT, Lyman RL (2019) Paleozoology and paleoenvironments: fundamentals, assumptions, techniques. Cambridge University Press, Cambridge
Falkowski PG (2001) Biogeochemical cycles. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, San Diego, pp 437–453
Feranec RS (2005) Growth rate and duration of growth in the adult canine ofSmilodon gracilis, and inferences on diet through stable isotope analysis. Bull Fla Mus Nat Hist 45(4):369–377
Feranec RS, DeSantis LRG (2014) Understanding specifics in generalist diets of carnivorans by analyzing stable carbon isotope values in Pleistocene mammals of Florida. Paleobiology 40(3):477–493.https://doi.org/10.1666/13055
Ferrusquía-Villafranca I, Pérez-Crespo VA, Ruiz-González JE et al (2018) The diet ofLeptomeryxsp. from the Late Eocene Yolomécatl Formation, NW Oaxaca, Sierra Madre del Sur Morphotectonic Province, SE México and its palaeoecological significance. Geol Mag 155(1):203–208.https://doi.org/10.1017/S0016756817000747
Fortelius M (1985) Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zool Fenn 180:1–76
Fortelius M, Solounias N (2000) Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. Am Mus Novit 2000(3301):1–36.https://doi.org/10.1206/0003-0082(2000)301<0001:FCOUMU>2.0.CO;2
Fortelius M, Eronen J, Jernvall J et al (2002) Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evol Ecol Res 4(7):1005–1016
Fortelius M, Žliobaitė I, Kaya F et al (2016) An ecometric analysis of the fossil mammal record of the Turkana Basin. Phil Trans R Soc B 371(1698):20150232.https://doi.org/10.1098/rstb.2015.0232
Franz-Odendaal TA, Kaiser TM (2003) Differential mesowear in the maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). Ann Zool Fenn 40(5):395–410
Fraser D, Theodor JM (2010) The use of gross dental wear in dietary studies of extinct lagomorphs. J Paleontol 84(4):720–729.https://doi.org/10.1666/09-066.1
Fraser D, Zybutz T, Lightner E et al (2014) Ruminant mandibular tooth mesowear: a new scheme for increasing paleoecological sample sizes. J Zool 294(1):41–48.https://doi.org/10.1111/jzo.12149
Goillot C, Blondel C, Peigné S (2009) Relationships between dental microwear and diet in Carnivora (Mammalia)—implications for the reconstruction of the diet of extinct taxa. Palaeogeogr Palaeoclimatol Palaeoecol 271(1–2):13–23.https://doi.org/10.1016/j.palaeo.2008.09.004
Gómez-Pérez LE, Carbot-Chanona G (2018) Nota sobre un ejemplar inmaduro deGomphotherium sp. del Mioceno tardío de Chiapas, México. Rev Geol Amér Central (58):189–202.https://doi.org/10.15517/rgac.v58i0.32851
Green JL (2009a) Dental microwear in the orthodentine of the Xenarthra (Mammalia) and its use in reconstructing the palaeodiet of extinct taxa: the case study ofNothrotheriops shastensis (Xenarthra, Tardigrada, Nothrotheriidae). Zool J Linn Soc 156(1):201–222.https://doi.org/10.1111/j.1096-3642.2008.00486.x
Green JL (2009b) Intertooth variation of orthodentine microwear in armadillos (Cingulata) and tree sloths (Pilosa). J Mammal 90(3):768–778.https://doi.org/10.1644/08-MAMM-A-257R1.1
Green JL, Kalthoff DC (2015) Xenarthran dental microstructure and dental microwear analyses, with new data forMegatherium americanum (Megatheriidae). J Mammal 96(4):645–657.https://doi.org/10.1093/jmammal/gyv045
Green JL, Croft DA (2018) Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. In: Croft DA, Su DF, Simpson SW (eds) Methods in paleoecology: reconstructing Cenozoic terrestrial environments and ecological communities. Springer, Switzerland, pp 53–73
Green JL, Semprebon GM, Solounias N (2005) Reconstructing the palaeodiet of FloridaMammut americanum via low-magnification stereomicroscopy. Palaeogeogr Palaeoclimatol Palaeoecol 223(1–2):34–48.https://doi.org/10.1016/j.palaeo.2005.03.026
Griffith E (1827) Synopsis of the species of the class Mammalia, as arranged with reference to their organization by Cuvier and other naturalists. With specific characters, synonyma, &c. &c. Geo. B. Whittaker, London
Grine FE (1986) Dental evidence for dietary differences inAustralopithecus andParanthropus: a quantitative analysis of permanent molar microwear. J Hum Evol 15(8):783–822.https://doi.org/10.1016/S0047-2484(86)80010-0
Guthrie RD (1990) Frozen fauna of the mammoth steppe: the story of Blue Babe. University of Chicago Press, Chicago
Gutiérrez-Bedolla M, García-Zepeda ML, López-García R et al (2016) Diet and habitat ofMammuthus columbi (Falconer, 1857) from two Late Pleistocene localities in central western Mexico. Quat Int 406:137–146.https://doi.org/10.1016/j.quaint.2015.08.022
Hannold C, Wang Y, Wang X et al (2021) Isotopic evidence for mammalian diets and environment in Early Pliocene Yepómera, Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 578:110569.https://doi.org/10.1016/j.palaeo.2021.110569
Hernández-Fernández M (2001) Bioclimatic discriminant capacity of terrestrial mammal faunas. Global Ecol Biogeogr 10(2):189–204.https://doi.org/10.1046/j.1466-822x.2001.00218.x
Hernández-Fernández M, Peláez-Campomanes P (2003) The bioclimatic model: a method of palaeoclimatic qualitative inference based on mammal associations. Global Ecol Biogeogr 12(6):507–517.https://doi.org/10.1046/j.1466-822X.2003.00057.x
Hernández-Fernández M, Peláez-Campomanes P (2005) Quantitative palaeoclimatic inference based on terrestrial mammal faunas. Global Ecol Biogeogr 14(1):39–56.https://doi.org/10.1111/j.1466-822X.2004.00125.x
Higgins P (2018) Isotope Ecology from Biominerals. In: Croft DA, Su DF, Simpson SW (eds) Methods in paleoecology: reconstructing Cenozoic terrestrial environments and ecological communities. Springer, Switzerland, pp 99–120
Hurum JH, Chinsamy-Turan A (2012) The radiation, bone histology, and biology of early mammals. In: Chinsamy-Turan A (ed) Forerunners of mammals: radiation, histology, biology. Indiana University Press, Bloomington, pp 248–270
Huttenlocker AK, Grossnickle DM, Kirkland JI et al (2018) Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature 558:108–112.https://doi.org/10.1038/s41586-018-0126-y
Jiménez-Hidalgo E, Bravo-Cuevas VM (2021) Los mamíferos del Cenozoico oaxaqueño y su importancia paleobiológica. In: Guerrero-Arenas R, Jiménez-Hidalgo E, González-Rodríguez KA (eds) El patrimonio paleontológico y geológico de Oaxaca. Universidad del Mar, México, pp 139–159
Jiménez-Hidalgo E, Carbot-Chanona G, Castañeda-Posadas C (2015) El registro de mamíferos fósiles de Puebla. In: Castañeda-Posadas C (ed) El registro paleobiológico del estado de Puebla. Benemérita Universidad Autónoma de Puebla, Escuela de Biología, Puebla de Zaragoza, México, pp 173–186
Jiménez-Hidalgo E, Carbot-Chanona G, Guerrero-Arenas R et al (2019) Species diversity and paleoecology of late Pleistocene horses from southern Mexico. Front Ecol Evol 7(394):1–18.https://doi.org/10.3389/fevo.2019.00394
Jiménez-Hidalgo E, Lander EB, Israde-Alcántara I et al (2021) Earliest Arikareean (later early Oligocene) Iniyoo local Fauna from Chilapa formation of Santiago Yolomécatl area in northwestern Oaxaca, southern Mexico. J South Am Earth Sci 109:103307.https://doi.org/10.1016/j.jsames.2021.103307
Jiménez-Hidalgo E, Guerrero-Arenas R, Crespo VD (2022) First galericine erinaceid (Mammalia: Eulipotyphla) from the early Oligocene of tropical North America. Hist Biol.https://doi.org/10.1080/08912963.2022.2070018
Jiménez-Manchón S, Blaise É, Albesso M et al (2022) Quantitative dental Mesowear analysis in domestic Caprids: a new method to reconstruct management strategies. J Archaeol Method Theory 29:540–560.https://doi.org/10.1007/s10816-021-09530-w
Kaiser TM (2011) Feeding ecology and niche partitioning of the Laetoli ungulate faunas. In: Harrison T (ed) Paleontology and geology of Laetoli: human evolution in context. Geology, Geochronology, Paleoecology and Paleoenvironment, vol 1. Springer, New York, pp 329–354
Kaiser TM, Fortelius M (2003) Differential mesowear in occluding upper and lower molars: opening mesowear analysis for lower molars and premolars in hypsodont horses. J Morphol 258(1):67–83.https://doi.org/10.1002/jmor.10125
Kaiser TM, Solounias N (2003) Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25(2):321–345
Kaiser TM, Solounias N, Fortelius M et al (2000) Tooth mesowear analysis onHippotherium primigenium from the Vallesian Dinotheriensande (Germany)—a blind test study. Carolinea Beitr Naturkd Forsch Suedwestdeutschl 58:103–114
Kaiser TM, Brasch J, Castell JC et al (2009) Tooth wear in captive wild ruminant species differs from that of free-ranging conspecifics. Mamm Biol 74:425–437.https://doi.org/10.1016/j.mambio.2008.09.003
Kaiser TM, Müller DWH, Fortelius M et al (2013) Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mamm Rev 43(1):34–46.https://doi.org/10.1111/j.1365-2907.2011.00203.x
Kermack KA, Mussett F (1958) The jaw articulation of the Docodonta and the classification of Mesozoic mammals. Proc R Soc Lond B 149(935):204–215.https://doi.org/10.1098/rspb.1958.0063
Kielan-Jaworowska Z, Cifelli RL, Luo ZX (2005) Mammals from the age of Dinosaurs: origins, evolution, and structure. Columbia University Press, New York
King B, Beck RMD (2020) Tip dating supports novel resolutions of controversial relationships among early mammals. Proc R Soc Lond B 287:20200943.https://doi.org/10.1098/rspb.2020.0943
Koch PL (2007) Isotopic study of the biology of modern and fossil vertebrates. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Publishing Ltd., Oxford, pp 99–154
Koenigswald WV, Anders U, Engels S et al (2010) Tooth morphology in fossil and extant Lagomorpha (Mammalia) reflects different mastication patterns. J Mammal Evol 17:275–299.https://doi.org/10.1007/s10914-010-9140-z
Kovarovic K, Su DF, Lintulaakso K (2018) Mammal community structure analysis. In: Croft DA, Su DF, Simpson SW (eds) Methods in paleoecology: reconstructing Cenozoic terrestrial environments and ecological communities. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham, pp 351–372
Kropacheva YE, Sibiryakov PA, Smirnov NG et al (2017) Variants of tooth mesowear inMicrotus voles as indicators of food hardness and abrasiveness. Russ J Ecol 48:73–80.https://doi.org/10.1134/S1067413616060096
Kühne WG (1958) Rhaetische Triconodonten aus Glamorgan, ihre Stellung zwischen den Klassen Reptilia und Mammalia und ihre Bedeutung für die REICHART’sche Theorie. Paläont Z 32:197–235.https://doi.org/10.1007/BF02989032
Lange IM (2002) Ice age mammals of North America: a guide to the big, the hairy, and the bizarre. Mountain Press Publishing, Montana
Lee-Thorp JA, van der Merwe NJ (1987) Carbon isotope analysis of fossil bone apatite. S Afr J Sci 83(11):712–715
Lee-Thorp JA, Sealy JC, van der Merwe NJ (1989) Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J Archaeol Sci 16(6):585–599
Lillegraven JA (1974) Biogeographical considerations of the marsupial-placental dichotomy. Annu Rev Ecol Syst 5:263–283.https://doi.org/10.1146/annurev.es.05.110174.001403
Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata, vol. 1. Laurentius Salvius: Holmiae.
Loffredo LF, DeSantis LRG (2014) Cautionary lessons from assessing dental mesowear observer variability and integrating paleoecological proxies of an extreme generalistCormohipparion emsliei. Palaeogeogr Palaeoclimatol Palaeoecol 395:42–52.https://doi.org/10.1016/j.palaeo.2013.12.020
Luo ZX (2007) Transformation and diversification in early mammal evolution. Nature 450:1011–1019.https://doi.org/10.1038/nature06277
Luo ZX, Cifelli RL, Kielan-Jaworowska Z (2001) Dual origin of tribosphenic mammals. Nature 409:53–57.https://doi.org/10.1038/35051023
Luo ZX, Ji Q, Yuan CX (2007) Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450:93–97.https://doi.org/10.1038/nature06221
Luo ZX, Yuan CX, Meng QJ et al (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476:442–445.https://doi.org/10.1038/nature10291
Lyman RL (1994) Vertebrate taphonomy (Cambridge manuals in archaeology). Cambridge University Press, Cambridge
Macfadden BJ, Cerling TE (1996) Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. J Vertebr Paleontol 16(1):103–115.https://doi.org/10.1080/02724634.1996.10011288
Maier W, Ruf I (2016) Evolution of the mammalian middle ear: a historical review. J Anat 228(2):270–283.https://doi.org/10.1111/joa.12379
Marín-Leyva AH, DeMiguel D, García-Zepeda ML et al (2016) Dietary adaptability of Late PleistoceneEquus from West Central Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 441:748–757.https://doi.org/10.1016/j.palaeo.2015.10.019
Marín-Leyva AH, Mainou L, Pérez-Crespo VA et al (2021) The life story of a gomphothere from east-central Mexico: a multidisciplinary approach. J South Am Earth Sci 111:103442.https://doi.org/10.1016/j.jsames.2021.103442
Marín-Leyva AH, Delgado-García S, García-Zepeda ML et al (2022) Environmental inferences based on the dietary ecology of camelids from west-central Mexico during the Late Pleistocene. Hist Biol.https://doi.org/10.1080/08912963.2022.2073822
McKenna MC, Bell SK (1997) Classification of Mammals: above the species level. Columbia University Press, New York
Mihlbachler MC, Solounias N (2006) Coevolution of tooth crown height and diet in oreodonts (Merycoidodontidae, Artiodactyla) examined with phylogenetically independent contrasts. J Mammal Evol 13:11–36.https://doi.org/10.1007/s10914-005-9001-3
Mihlbachler MC, Rivals F, Solounias N et al (2011) Dietary change and evolution of horses in North America. Science 331(6021):1178–1181.https://doi.org/10.1126/science.1196166
Mihlbachler MC, Beatty BL, Caldera-Siu A et al (2012) Error rates and observer bias in dental microwear analysis using light microscopy. Palaeontol Electron 15(1.12A):1–22
Montellano-Ballesteros M (2015) Síntesis sobre el registro fósil de los mamíferos mesozoicos mexicanos. Bol Geol Min 126(1):7–20
Montellano-Ballesteros M, Jiménez-Hidalgo E (2006) Mexican fossil mammals, who, where and when? In: Vega FJ, Nyborg TG, Perrillat MC, Montellano-Ballesteros M, Cevallos-Ferriz SRS, Quiroz-Barroso SA (eds) Studies on Mexican paleontology. Topics in geobiology, vol 24. Springer, Dordrecht, pp 249–273
Murray CG, Sanson GD (1998) Thegosis—a critical review. Aust Dent J 43(3):192–198.https://doi.org/10.1111/j.1834-7819.1998.tb00164.x
Nelson S, Badgley C, Zakem E (2005) Microwear in modern squirrels in relation to diet. Palaeontol Electron 8(1.14A):1–15
Nowak RM, Paradiso JL (1983) Walker’s mammals of the world. The Johns Hopkins University Press, Baltimore, London
Nunez EE, Macfadden BJ, Mead JI et al (2010) Ancient forests and grasslands in the desert: diet and habitat of Late Pleistocene mammals from Northcentral Sonora, Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 297(2):391–400.https://doi.org/10.1016/j.palaeo.2010.08.021
Pérez-Crespo VA, Sánchez-Chillón B, Arroyo-Cabrales J et al (2009) La dieta y el hábitat del mamut y los caballos del Pleistoceno tardío de El Cedral con base en isótopos estables (δ13C, δ18O). Rev Mex Cienc Geol 26(2):347–355
Pérez-Crespo VA, Arroyo-Cabrales J, Benammi M et al (2010) Carbon isotopic values of tooth enamel ofMammuthus columbi from Tocuila, State of México, México. Curr Res Pleisto 27:188–190
Pérez-Crespo VA, Arroyo-Cabrales J, Benammi M et al (2012a) Geographic variation of diet and habitat of the Mexican populations of Columbian Mammoth (Mammuthus columbi). Quat Int 276–277: 8–16
Pérez-Crespo VA, Arroyo-Cabrales J, Alva-Valdivia LM et al (2012b) Diet and habitat definitions for Mexican glyptodonts from Cedral (San Luis Potosí, México) based on stable isotope analysis. Geol Mag 149(1):153–157.https://doi.org/10.1017/S0016756811000951
Pérez-Crespo VA, Arroyo-Cabrales J, Alva-Valdivia LM et al (2012c) Datos isotópicos (δ13C, δ18O) de la fauna pleistocénica de la Laguna de las Cruces, San Luis Potosí, México. Rev Mex Cienc Geol 29(2):299–307
Pérez-Crespo VA, Arroyo-Cabrales J, Benammi M et al (2013a) Variación de la dieta del mamut de las praderas de Laguna de las Cruces, San Luis Potosí, Mexico. Bol Soc Geol Mex 65(3):573–580
Pérez-Crespo VA, Rodríguez J, Arroyo-Cabrales J et al (2013b) Variación ambiental durante el Pleistoceno Tardío y Holoceno Temprano en Guilá Naquitz (Oaxaca, México). Rev Bras Paleontol 16(3):487–494.https://doi.org/10.4072/rbp.2013.3.08
Pérez-Crespo VA, Arroyo-Cabrales J, Alva-Valdivia LM et al (2014) La paleodieta de cinco especies de mamíferos herbívoros rancholabreanos de Valsequillo (Puebla, México). Rev Chil Antropol 30:76–82
Pérez-Crespo VA, Carbot-Chanona G, Morales-Puente P et al (2015) Paleoambiente de la Depresión Central de Chiapas, con base en isótopos estables de carbono y oxígeno. Rev Mex Cienc Geol 32(2):273–282
Pérez-Crespo VA, Arroyo-Cabrales J, Alva-Valdivia LM et al (2016a) Inferences of feeding habits of Late PleistoceneEquus sp. from eight Mexican localities. Neues Jahrb Geol Palaeontol Abh 279(1):107–121.https://doi.org/10.1127/njgpa/2016/0544
Pérez-Crespo VA, Ferrusquía-Villafranca I, Bravo-Cuevas VM et al (2016b) Dietary analysis of Late Cenozoic Mexican equids from three different geographic/geologic settings using stable carbon isotopes: coincidences, differences and paleobiologic significance. J South Am Earth Sci 66:97–109.https://doi.org/10.1016/j.jsames.2015.11.015
Pérez-Crespo VA, Barrón-Ortiz CR, Arroyo-Cabrales J et al (2016c) Preliminary data on the diet and habitat preferences ofCapromeryx mexicana (Mammalia: Antilocapridae) from the late Pleistocene of Cedral, San Luis Potosí, Mexico. Southwest Nat 61(2):152–155.https://doi.org/10.1894/0038-4909-61.2.152
Pérez-Crespo VA, Carranza-Castañeda O, Arroyo-Cabrales J et al (2017a) Diet and habitat of unique individuals ofDinohippus mexicanus andNeohipparion eurystyle (Equidae) from the late Hemphillian (Hh3) of Guanajuato and Jalisco, central Mexico: stable isotope studies. Rev Mex Cienc Geol 34(1):38–44
Pérez-Crespo VA, Arroyo-Cabrales J, Morales-Puente P et al (2017b) Preliminary paleodiet of a specimen of the Pliocene rhinoceros (Teleoceras fossiger) from Michoacán, México. Southwest Nat 62(3):232–234.https://doi.org/10.1894/0038-4909-62.3.232
Pérez-Crespo VA, Arroyo-Cabrales J, Morales-Puente P et al (2018) Diet and habitat of mesomammals and megamammals from Cedral, San Luis Potosí, México. Geol Mag 155(3):674–684.https://doi.org/10.1017/S0016756816000935
Pérez-Crespo VA, Arroyo-Cabrales J, Guzmán AF et al (2020) Isotopic paleoecology of a toxodont (Mixotoxodon larensis) from Michoacan, Mexico. Southwest Nat 64(1):63–66.https://doi.org/10.1894/0038-4909-64-1-63
Pérez-Crespo VA, Bravo-Cuevas VM, Arroyo-Cabrales J (2022) Feeding habits ofEquus conversidens andHaringtonhippus franciscifrom Valsequillo, Puebla, México. Hist Biol 34(7):1252–1259.https://doi.org/10.1080/08912963.2021.1973452
Polly PD, Head J (2015) Measuring Earth-Life transitions: ecometric analysis of functional traits from Late Cenozoic vertebrates. Paleontol Soc Papers 21:21–46.https://doi.org/10.1017/S1089332600002953
Polly PD, Sarwar S (2014) Extinction, extirpation, and exotics: effects on the correlation between traits and environment at the continental level. Ann Zool Fenn 51(1–2):209–226.https://doi.org/10.5735/086.051.0221
Prado JL, Sánchez B, Alberdi MT (2011) Ancient feeding ecology inferred from stable isotopic evidence from fossil horses in South America over the past 3 Ma. BMC Ecol 11:1–15.https://doi.org/10.1186/1472-6785-11-15
Prothero DR (2006) After the dinosaurs. The age of mammals. Indiana University Press, Bloomington
Rauhut OWM, Martin T, Ortiz-Jaureguizar E et al (2002) A Jurassic mammal from South America. Nature 416:165–168.https://doi.org/10.1038/416165a
Reed CA (1960) Polyphyletic or monophyletic ancestry of mammals, or: what is a class? Evolution 14(3):314.https://doi.org/10.2307/2405974
Rensberger JM (1978) Scanning electron microscopy of wear and occlusal events in some small herbivores. In: Butler PM, Joysey KA (eds) Development, function and evolution of teeth. Academic Press, New York, pp 415–438
Rivals F, Semprebon GM (2006) A comparison of the dietary habits of a large sample of the Pleistocene pronghornStockoceros onusrosagris from the Papago Springs Cave in Arizona to the modernAntilocapra americana. J Vertebr Paleontol 26(2):495–500.https://doi.org/10.1671/0272-4634(2006)26[495:ACOTDH]2.0.CO;2
Rivals F, Solounias N, Mihlbachler MC (2007) Evidence for geographic variation in the diets of late Pleistocene and early HoloceneBison in North America, and differences from the diets of recentBison. Quat Res 68(3):338–346.https://doi.org/10.1016/j.yqres.2007.07.012
Rowe T (1988) Definition, diagnosis, and origin of mammalia. J Vertebr Paleontol 8(3):241–264.https://doi.org/10.1080/02724634.1988.10011708
Ruez DR (2005) Diet of PleistoceneParamylodon harlani (Xenarthra: Mylodontidae): review of methods and preliminary use of carbon isotopes. Texas J Sci 57(4):329–344
Ryan AS (1979) Wear striation direction on primate teeth: a scanning electron microscope examination. Am J Phys Anthropol 50(2):155–167.https://doi.org/10.1002/ajpa.1330500204
Ryan AS (1981) Anterior dental microwear and its relationship to diet and feeding behavior in three african primates (Pan troglodytes troglodytes,Gorilla gorilla gorilla, andPapio hamadryas). Primates 22(4):533–550.https://doi.org/10.1007/BF02381245
Saarinen J, Karme A (2017) Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra)—applying a new mesowear approach. Palaeogeogr Palaeoclimatol Palaeoecol 476:42–54.https://doi.org/10.1016/j.palaeo.2017.03.027
Saarinen J, Karme A, Cerling T et al (2015) A new tooth wear-based dietary analysis method for Proboscidea (Mammalia). J Vertebr Paleontol 35(3):e918546.https://doi.org/10.1080/02724634.2014.918546
Sánchez-Cordero VS, Botello F, Flores-Martínez JJ et al (2014) Biodiversidad de Chordata (Mammalia) en México. Rev Mex Biodiv 85:496–504.https://doi.org/10.7550/rmb.31688
Schap JA, Samuels JX, Joyner TA (2021) Ecometric estimation of present and past climate of North America using crown heights of rodents and lagomorphs. Palaeogeogr Palaeoclimatol Palaeoecol 562:110144.https://doi.org/10.1016/j.palaeo.2020.110144
Semprebon GM, Godfrey LR, Solounias N et al (2004) Can low-magnification stereomicroscopy reveal diet? J Hum Evol 47(3):115–144.https://doi.org/10.1016/j.jhevol.2004.06.004
Semprebon GM, Rivals F, Janis CM (2019) The role of grass versus exogenous abrasives in the paleodietary patterns of North American ungulates. Front Ecol Evol 7:65.https://doi.org/10.3389/fevo.2019.00065
Sereno PC (2005) The logical basis of phylogenetic taxonomy. Syst Biol 54(4):595–619.https://doi.org/10.1080/106351591007453
Shaw G (1799)Platypus anatinus. The duck-billedPlatypus. Nat Miscellany 10(118):7
Short RA, Lawing AM (2021) Geography of artiodactyl locomotor morphology as an environmental predictor. Divers Distrib 27(9):1818–1831.https://doi.org/10.1111/ddi.13371
Short RA, Pinson K, Lawing AM (2020) Comparison of environmental inference approaches for ecometric analyses: using hypsodonty to estimate precipitation. Ecol Evol 11(1):587–598.https://doi.org/10.1002/ece3.7081
Simpson GG (1959) Mesozoic mammals and the polyphyletic origin of mammals. Evolution 13(3):405–414.https://doi.org/10.2307/2406116
Solounias N, Semprebon GM (2002) Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. Am Mus Novit 3366:1–49.https://doi.org/10.1206/0003-0082(2002)366%3c0001:AITROU%3e2.0.CO;2
Solounias N, Tariq M, Hou S et al (2014) A new method of tooth mesowear and a test of it on domestic goats. Ann Zool Fenn 51(1–2):111–118.https://doi.org/10.5735/086.051.0212
Sues HD, Fraser NC (2010) Triassic life on land: the great transition. Columbia University Press, New York
Sulzman EW (2007) Stable isotope chemistry and measurement: a primer. In: Michener R, Lajtha K (eds) Stable isotopes in Ecology and environmental science. Blackwell Publishers, Oxford, pp 1–21
Taylor LA, Kaiser TM, Schwitzer C et al (2013) Detecting inter-cusp and inter-tooth wear patterns in rhinocerotids. PLoS ONE 8(12):e80921.https://doi.org/10.1371/journal.pone.0080921
Teaford MF, Walker A (1984) Quantitative differences in dental microwear between primate species with different diets and a comment on the presumed diet ofSivapithecus. Am J Phys Anthropol 64(2):191–200.https://doi.org/10.1002/ajpa.1330640213
Tomé CP, Elliott-Smith EA, Lyons SK et al (2020) Changes in the diet and body size of a small herbivorous mammal (hispid cotton rat,Sigmodon hispidus) following the late Pleistocene megafauna extinction. Ecography 43(4):604–619.https://doi.org/10.1111/ecog.04596
Townsend KEB, Croft DA (2008) Enamel microwear in caviomorph rodents. J Mammal 89(3):730–743.https://doi.org/10.1644/06-MAMM-A-336R1.1
Turner A, Antón M (2004) Evolving Eden: an illustrated guide to the evolution of the African large-mammal fauna. Columbia University Press, New York
Ulbricht A, Maul LC, Schulz E (2015) Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. Mamm Biol 80:14–20.https://doi.org/10.1016/j.mambio.2014.06.004
Ungar PS, Scott RS, Scott JR et al (2008) Dental microwear analysis: historical perspectives and new approaches. In: Irish JD, Nelson GC (eds) Technique and application in dental anthropology. Cambridge University Press, Cambridge, pp 389–425
Vermillion WA, Polly PD, Head JJ et al (2018) Ecometrics: a trait-based approach to paleoclimate and paleoenvironmental reconstruction. In: Croft DA, Su DF, Simpson SW (eds) Methods in paleoecology: reconstructing Cenozoic Terrestrial environment ans ecological communities. Springer, Cham, pp 371–392
Walker PL (1976) Wear striations on the incisors of Ceropithecid monkeys as an index of diet and habitat preference. Am J Phys Anthropol 45(2):299–307.https://doi.org/10.1002/ajpa.1330450215
Walker A, Hoeck HN, Perez L (1978) Microwear of mammalian teeth as an indicator of diet. Science 201(4359):908–910.https://doi.org/10.1126/science.684415
Walter H (1970) Vegetationszonen und Klima. Eugen Ulmer, Stuttgart
Walter H, Breckle SW (1986) Ecological systems of the geobiosphere: 2 tropical and subtropical Zonobiomes. Springer-Verlag, Berlin
Wang H, Meng J, Wang Y (2019) Cretaceous fossil reveals a new pattern in mammalian middle ear evolution. Nature 576:102–105.https://doi.org/10.1038/S41586-019-1792-0
Widga C (2006) Niche variability in late Holocene bison: a perspective from Big Bone Lick, KY. J Archaeolog Sci 33(9):1237–1255.https://doi.org/10.1016/J.JAS.2005.12.011
Williamson TE, Brusatte SL, Wilson GP (2014) The origin and early evolution of metatherian mammals: the Cretaceous record. ZooKeys 465:1–76.https://doi.org/10.3897/zookeys.465.8178
Winkler DE, Kaiser TM (2011) A case study of seasonal, sexual and ontogenetic divergence in the feeding behaviour of the moose (Alces alces Linné, 1758). Verh Naturwiss Ver Hamburg 46:331–348
Wolf D, Semprebon GM, Bernor RL (2012) New observations on the paleodiet of the late Miocene Höwenegg (Hegau, Germany)Hippotherium primigenium (Mammalia, Equidae). Boll Soc Paleontol Ital 51(3):185–191.https://doi.org/10.4435/BSPI.2012.21
Zhang FK, Cui GH (1983) New material and new understanding ofSinoconodon. Vertebrata PalAsiatica 21(1):32–41
Author information
Authors and Affiliations
Laboratorio de Paleobiología, Instituto de Recursos, Universidad del Mar, Puerto Escondido, Oaxaca, México
Eduardo Jiménez-Hidalgo
Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de Mexico, Morelia, Michoacán, México
Roberto Díaz-Sibaja
Museo de Paleontología, Área Académica de Biología, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto, Hidalgo, México
Victor Bravo-Cuevas
- Eduardo Jiménez-Hidalgo
You can also search for this author inPubMed Google Scholar
- Roberto Díaz-Sibaja
You can also search for this author inPubMed Google Scholar
- Victor Bravo-Cuevas
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toEduardo Jiménez-Hidalgo.
Editor information
Editors and Affiliations
Universidad del Mar, Puerto Escondido, Mexico
Rosalía Guerrero-Arenas
Universidad del Mar, Puerto Escondido, Mexico
Eduardo Jiménez-Hidalgo
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Jiménez-Hidalgo, E., Díaz-Sibaja, R., Bravo-Cuevas, V. (2024). Mammals as Paleoenvironmental Proxies. In: Guerrero-Arenas, R., Jiménez-Hidalgo, E. (eds) Past Environments of Mexico. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-031-51034-2_13
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-031-51033-5
Online ISBN:978-3-031-51034-2
eBook Packages:Earth and Environmental ScienceEarth and Environmental Science (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative