Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

ArcheoWeedNet: Weed Classification in the Parco archeologico del Colosseo

  • Conference paper
  • First Online:

Abstract

This paper summarizes the development of a weed monitoring system in the Parco archeologico del Colosseo (hereinafter, Parco) using Deep Learning (DL) techniques to recognize forty-one species of plants now present in the area. The project is part of SyPEAH (System for the Protection and Education of Archaeological Heritage), a platform designed to safeguard the Parco by its Authority. This study emanates from an extended phase of the photographic collection spanning ten months. This endeavour facilitated the compilation of a dataset comprising nearly 5,000 photographs depicting the flora of pertinent significance. In the paper, we detail the first version of the system, consisting of a neural network trained to predict the species of plants and the materials on which they grow. We also describe transfer learning techniques aimed at improving performance. The present system attains recognition accuracy exceeding 90% for common species, enabling near real-time monitoring of the entire Park’s flora through image analysis using supplied fixed and mobile devices. It will support proactive interventions for maintenance. The paper details data analysis and neural network design and envisions future developments.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Arnal Barbedo, J.G.: Digital image processing techniques for detecting, quantifying and classifying plant diseases. Springerplus2(1), 1–12 (2013)

    Article  Google Scholar 

  2. Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D., Bochtis, D.: Machine learning in agriculture: a comprehensive updated review. Sensors21(11), 3758 (2021)

    Article  Google Scholar 

  3. Cravero, A., Pardo, S., Sepúlveda, S., Muñoz, L.: Challenges to use machine learning in agricultural big data: a systematic literature review. Agronomy12(3), 748 (2022)

    Article  Google Scholar 

  4. Della Giovampaola, I.: Piano sostenibile di tutela e valorizzazione del patrimonio archeologico e di educazione continua al patrimonio culturale: SyPEAH (A platform Systemfor the Protection and Education of Archaeological Heritage). Bullettino della Commissione Archeologica Comunale CXII, pp. 61–76 (2021)

    Google Scholar 

  5. Della Giovampaola, I.: SyPEAH: the WebAPP system for protection and education to archaeological heritage in the parco archeologico del colosseo. Geosciences11(6), 246 (2021)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)

    Google Scholar 

  8. Fracchiolla, M., Lasorella, C., Cazzato, E., Vurro, M.: Weeds in non-agricultural areas: how to evaluate the impact? A preliminary case study in archaeological sites. Agronomy12(5), 1079 (2022)

    Article  Google Scholar 

  9. Garcin, C., et al.: Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution. In: NeurIPS 2021–35th Conference on Neural Information Processing Systems (2021)

    Google Scholar 

  10. Angiosperm Phylogeny Group: An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG iv. Bot. J. Linn. Soc.181(1), 1–20 (2016)

    Google Scholar 

  11. Hasan, A.M., Sohel, F., Diepeveen, D., Laga, H., Jones, M.G.: A survey of deep learning techniques for weed detection from images. Comput. Electron. Agric.184, 106067 (2021)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature521(7553), 436–444 (2015)

    Article  Google Scholar 

  14. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  15. Olsen, A., et al.: DeepWeeds: a multiclass weed species image dataset for deep learning. Sci. Rep.9(1), 2058 (2019)

    Article  Google Scholar 

  16. Panda, B., Mishra, M.K., Mishra, B.S.P., Tiwari, A.K.: An extensive review on crop/weed classification models. In: Web Intelligence, pp. 1–16. No. Preprint, IOS Press (2023)

    Google Scholar 

  17. Ricotta, C., Grapow, L.C., Avena, G., Blasi, C.: Topological analysis of the spatial distribution of plant species richness across the city of Rome (Italy) with the echelon approach. Landsc. Urban Plan.57(2), 69–76 (2001)

    Article  Google Scholar 

  18. Russo, A., Della Giovampaola, I.: Il monitoraggio e la manutenzione delle aree archeologiche. Il piano per il futuro del Parco archeologico del Colosseo, pp. 13–31. “L’Erma” di Bretschneider (2020)

    Google Scholar 

  19. Russo, A., Giovampaola, I.D., Spizzichino, D., Leoni, G., Coletta, A., Virelli, M.: The project of parco archeologico del colosseo and the Italian network of archaeological parks: from satellite monitoring to conservation and preventive maintenance policies. In: El-Qady, G.M., Margottini, C. (eds.) Sustainable Conservation of UNESCO and Other Heritage Sites Through Proactive Geosciences, pp. 659–678. Springer, Cham(2023).https://doi.org/10.1007/978-3-031-13810-2_34

  20. Sudars, K., Jasko, J., Namatevs, I., Ozola, L., Badaukis, N.: Dataset of annotated food crops and weed images for robotic computer vision control. Data Brief31, 105833 (2020)

    Article  Google Scholar 

  21. Sun, Y., Liu, Y., Wang, G., Zhang, H., et al.: Deep learning for plant identification in natural environment. Comput. Intell. Neurosci.2017, 7361042 (2017)

    Article  Google Scholar 

  22. Therrien, R., Doyle, S.: Role of training data variability on classifier performance and generalizability. In: Medical Imaging 2018: Digital Pathology, vol. 10581, pp. 58–70. SPIE (2018)

    Google Scholar 

  23. Wäldchen, J., Mäder, P.: Plant species identification using computer vision techniques: a systematic literature review. Arch. Comput. Methods Eng.25, 507–543 (2018)

    Article MathSciNet  Google Scholar 

  24. Wu, Z., Chen, Y., Zhao, B., Kang, X., Ding, Y.: Review of weed detection methods based on computer vision. Sensors21(11), 3647 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Sapienza University of Rome, Rome, Italy

    Gaetano Saurio, Marco Muscas, Indro Spinelli & Simone Scardapane

  2. Ministry of Culture, Rome, Italy

    Irma Della Giovampaola

  3. UniNettuno University, Rome, Italy

    Valerio Rughetti

Authors
  1. Gaetano Saurio

    You can also search for this author inPubMed Google Scholar

  2. Marco Muscas

    You can also search for this author inPubMed Google Scholar

  3. Indro Spinelli

    You can also search for this author inPubMed Google Scholar

  4. Valerio Rughetti

    You can also search for this author inPubMed Google Scholar

  5. Irma Della Giovampaola

    You can also search for this author inPubMed Google Scholar

  6. Simone Scardapane

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toGaetano Saurio.

Editor information

Editors and Affiliations

  1. University of Udine, Udine, Italy

    Gian Luca Foresti

  2. University of Udine, Udine, Italy

    Andrea Fusiello

  3. University of York, York, UK

    Edwin Hancock

Rights and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saurio, G., Muscas, M., Spinelli, I., Rughetti, V., Della Giovampaola, I., Scardapane, S. (2024). ArcheoWeedNet: Weed Classification in the Parco archeologico del Colosseo. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14365. Springer, Cham. https://doi.org/10.1007/978-3-031-51023-6_36

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp