- Nicholas Brandt ORCID:orcid.org/0000-0002-5120-63469,
- Sven Maier ORCID:orcid.org/0000-0003-3221-680210,
- Tobias Müller11 &
- …
- Jörn Müller-Quade12
Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 13950))
Included in the following conference series:
487Accesses
Abstract
Composable protocols for Multi-Party Computation that provide security with Identifiable Abort against a dishonest majority require some form of setup, e.g. correlated randomness among the parties. While this is a very useful model, it has the downside that the setup’s randomness must beprogrammable, otherwise security becomes provably impossible. Since programmability is more realistic for smaller setups (in terms of number of parties), it is crucial to minimize the correlation complexity (degree of correlation) of the setup’s randomness.
We give a tight tradeoff between the correlation complexity\(\beta \) and the corruption threshold\(t\). Our bounds are strong in that\(\beta \)-wise correlation is sufficient for statistical security while\(\beta -1\)-wise correlation is insufficient even for computational security. In particular, for strong security, i.e.,\(t< n\), full\(n\)-wise correlation is necessary. However, for any constant fraction of honest parties, we provide a protocol withconstant correlation complexity which tightens the gap between the theoretical model and the setup’s implementation in the real world. In contrast, previous state-of-the-art protocols require full\(n\)-wise correlation regardless of\(t\).
Work done while the first author was supported by ERC Project PREP-CRYPTO 724307, the second author was at the Karlsruhe Institute of Technology, Germany, and the third author was at the FZI Research Center for Information Technology, Germany.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 7549
- Price includes VAT (Japan)
- Softcover Book
- JPY 9437
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Throughout the paper, we require a setup among each subset of parties of size\(\beta \).
- 2.
To our knowledge this is the first full characterization of Identifiable Abort in the dishonest majority setting.
- 3.
As a side note we generalize the notion of the minimal complete cardinality (MCC) from [16] to the setting where the number of parties varies in the security parameter\(\lambda \). This was not captured by the original definition of MCC in [16] and—to the best of our knowledge—not formally addressed in previous literature.
- 4.
Throughout the paper we assume that each subset of parties of the appropriate cardinality has access to a setup.
- 5.
- 6.
Recall that we only assume setups to have security with Identifiable Abort.
- 7.
Note that is vertex is their own neighbor because the graph is reflexive.
- 8.
We note that [28] state their results in the stand-alone model.
- 9.
The postprocessing\(\phi \) corresponds to removing edges from parties with strictly more than\(t\) conflicts.
- 10.
The sender inputs the same shares into each setup that it participates in.
References
Baum, C., Orsini, E., Scholl, P.: Efficient secure multiparty computation with identifiable abort. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 461–490. Springer, Heidelberg (2016).https://doi.org/10.1007/978-3-662-53641-4_18
Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round MPC with identifiable abort and public verifiability. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 562–592. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-56880-1_20
Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, New York (1990).https://doi.org/10.1007/0-387-34805-0_49
Boyle, E., et al.: Compressing vector OLE. In: Lie, D., et al. (eds.) ACM CCS 2018, pp. 896–912. ACM Press, October 2018
Boyle, E., et al.: Correlated pseudorandom functions from variable-density LPN. In: 61st FOCS, pp. 1069–1080. IEEE Computer Society Press, November 2020
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-26954-8_16
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001
Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001).https://doi.org/10.1007/3-540-44647-8_2
Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007).https://doi.org/10.1007/978-3-540-70936-7_4
Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press, May 1986
Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 502–534. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-84252-9_17
Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997).https://doi.org/10.1007/3-540-69053-0_21
Crépeau, C.: Verifiable disclosure of secrets and applications (abstract). In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 150–154. Springer, Heidelberg (1990).https://doi.org/10.1007/3-540-46885-4_17
Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions (extended abstract). In: 29th FOCS, pp. 42–52. IEEE Computer Society Press, October 1988
Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995).https://doi.org/10.1007/3-540-44750-4_9
Fitzi, M., Garay, J.A., Maurer, U., Ostrovsky, R.: Minimal complete primitives for secure multi-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 80–100. Springer, Heidelberg (2001).https://doi.org/10.1007/3-540-44647-8_5
Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193. Springer, Heidelberg (2002).https://doi.org/10.1007/3-540-45708-9_12
Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010).https://doi.org/10.1007/978-3-642-11799-2_19
Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg (2010).https://doi.org/10.1007/978-3-642-14623-7_31
Ishai, Y., Ostrovsky, R., Seyalioglu, H.: Identifying cheaters without an honest majority. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 21–38. Springer, Heidelberg (2012).https://doi.org/10.1007/978-3-642-28914-9_2
Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 369–386. Springer, Heidelberg (2014).https://doi.org/10.1007/978-3-662-44381-1_21
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008).https://doi.org/10.1007/978-3-540-85174-5_32
Ishai, Y., et al.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press, June 2007
Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: homomorphic secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 678–708. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-77870-5_24
Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003).https://doi.org/10.1007/978-3-540-45146-4_19
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press, May 1989
Sadeghi, A.-R., Schneider, T., Winandy, M.: Token-based cloud computing. In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol. 6101, pp. 417–429. Springer, Heidelberg (2010).https://doi.org/10.1007/978-3-642-13869-0_30
Simkin, M., Siniscalchi, L., Yakoubov, S.: On sufficient oracles for secure computation with identifiable abort. In: Galdi, C., Jarecki, S. (eds.) SCN 2022. LNCS, vol. 13409, pp. 494–515. Springer, Cham (2022).https://doi.org/10.1007/978-3-031-14791-3_22
Wan, J., Xiao, H., Shi, E., Devadas, S.: Expected constant round byzantine broadcast under dishonest majority. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 381–411. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-64375-1_14
Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006).https://doi.org/10.1007/11761679_14
Author information
Authors and Affiliations
ETH Zurich, Zurich, Switzerland
Nicholas Brandt
CNRS, IRIF, Université de Paris, Paris, France
Sven Maier
Karlsruhe, Germany
Tobias Müller
Karlsruhe Institute of Technology, Karlsruhe, Germany
Jörn Müller-Quade
- Nicholas Brandt
You can also search for this author inPubMed Google Scholar
- Sven Maier
You can also search for this author inPubMed Google Scholar
- Tobias Müller
You can also search for this author inPubMed Google Scholar
- Jörn Müller-Quade
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toNicholas Brandt.
Editor information
Editors and Affiliations
George Mason University, Fairfax, VA, USA
Foteini Baldimtsi
University of Bern, Bern, Switzerland
Christian Cachin
Rights and permissions
Copyright information
© 2024 International Financial Cryptography Association
About this paper
Cite this paper
Brandt, N., Maier, S., Müller, T., Müller-Quade, J. (2024). On the Correlation Complexity of MPC with Cheater Identification. In: Baldimtsi, F., Cachin, C. (eds) Financial Cryptography and Data Security. FC 2023. Lecture Notes in Computer Science, vol 13950. Springer, Cham. https://doi.org/10.1007/978-3-031-47754-6_8
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-031-47753-9
Online ISBN:978-3-031-47754-6
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative