Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Frequency Information Matters for Image Matting

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 14406))

Included in the following conference series:

Abstract

Image matting aims to estimate the opacity of foreground objects in order to accurately extract them from the background. Existing methods are only concerned with RGB features to obtain alpha mattes, limiting the perception of local tiny details. To address this issue, we introduce frequency information as an auxiliary clue to accurately distinguish foreground boundaries and propose theFrequencyMattingNetwork (FMN). Specifically, we deploy a Frequency Boosting Module (FBM) in addition to the Discrete Cosine Transform (DCT) to extract frequency information from input images. The proposed FBM is a learnable component that empowers the model to adapt to complex scenarios. Furthermore, we design a Domain Aggregation Module (DAM) to effectively fuse frequency features with RGB features. With the assistance of frequency clues, our proposed FMN achieves significant improvements in matting accuracy and visual quality compared with state-of-the-art methods. Extensive experiments on Composition-1k and Distinctions-646 datasets demonstrate the superiority of introducing frequency information for image matting.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Aksoy, Y., Ozan Aydin, T., Pollefeys, M.: Designing effective inter-pixel information flow for natural image matting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 29–37 (2017)

    Google Scholar 

  2. Cai, S., et al.: Disentangled image matting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8819–8828 (2019)

    Google Scholar 

  3. Chen, G., et al.: PP-matting: high-accuracy natural image matting. arXiv preprintarXiv:2204.09433 (2022)

  4. Chen, Q., Li, D., Tang, C.K.: KNN matting. IEEE Trans. Pattern Anal. Mach. Intell.35(9), 2175–2188 (2013)

    Article  Google Scholar 

  5. Dai, Y., Lu, H., Shen, C.: Learning affinity-aware upsampling for deep image matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6841–6850 (2021)

    Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis.88, 303–308 (2009)

    Article  Google Scholar 

  7. Gastal, E.S., Oliveira, M.M.: Shared sampling for real-time alpha matting. In: Computer Graphics Forum, vol. 29, pp. 575–584. Wiley Online Library (2010)

    Google Scholar 

  8. Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural networks straight from jpeg. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  9. Hou, Q., Liu, F.: Context-aware image matting for simultaneous foreground and alpha estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4130–4139 (2019)

    Google Scholar 

  10. Karacan, L., Erdem, A., Erdem, E.: Image matting with KL-divergence based sparse sampling. In: Proceedings of the IEEE International Con Computer Vision, pp. 424–432 (2015)

    Google Scholar 

  11. Lee, P., Wu, Y.: Nonlocal matting. In: CVPR 2011, pp. 2193–2200. IEEE (2011)

    Google Scholar 

  12. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell.30(2), 228–242 (2007)

    Article  Google Scholar 

  13. Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging composite and real: towards end-to-end deep image matting. Int. J. Comput. Vis.130(2), 246–266 (2022)

    Article  Google Scholar 

  14. Li, J., Zhang, J., Tao, D.: Deep automatic natural image matting. arXiv preprintarXiv:2107.07235 (2021)

  15. Li, Y., Lu, H.: Natural image matting via guided contextual attention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11450–11457 (2020)

    Google Scholar 

  16. Lu, H., Dai, Y., Shen, C., Xu, S.: Indices Matter: learning to index for deep image matting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3266–3275 (2019)

    Google Scholar 

  17. Lutz, S., Amplianitis, K., Smolic, A.: AlphaGAN: generative adversarial networks for natural image matting. arXiv preprintarXiv:1807.10088 (2018)

  18. Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: MatteFormer: transformer-based image matting via prior-tokens. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11696–11706 (2022)

    Google Scholar 

  19. Qiao, Y., et al.: Hierarchical and progressive image matting. ACM Trans. Multimed. Comput. Commun. Appl.19(2), 1–23 (2023)

    Article  Google Scholar 

  20. Qiao, Y., et al.: Attention-guided hierarchical structure aggregation for image matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13676–13685 (2020)

    Google Scholar 

  21. Qin, Z., Zhang, P., Wu, F., Li, X.: FcaNet: frequency channel attention networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 783–792 (2021)

    Google Scholar 

  22. Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., Rott, P.: A perceptually motivated online benchmark for image matting. In: 2009 IEEE Con Computer Vision and Pattern Recognition, pp. 1826–1833. IEEE (2009)

    Google Scholar 

  23. Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving image matting using comprehensive sampling sets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 636–643 (2013)

    Google Scholar 

  24. Shen, X., Tao, X., Gao, H., Zhou, C., Jia, J.: Deep automatic portrait matting. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 92–107. Springer, Cham (2016).https://doi.org/10.1007/978-3-319-46448-0_6

    Chapter  Google Scholar 

  25. Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sampling for natural image matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3055–3063 (2019)

    Google Scholar 

  26. Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y.K., Ren, F.: Learning in the frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1740–1749 (2020)

    Google Scholar 

  27. Xu, N., Price, B., Cohen, S., Huang, T.: Deep image matting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2970–2979 (2017)

    Google Scholar 

  28. Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-resolution deep image matting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3217–3224 (2021)

    Google Scholar 

  29. Yu, Q., et al.: Mask guided matting via progressive refinement network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1154–1163 (2021)

    Google Scholar 

  30. Zhang, Y., et al.: A late fusion CNN for digital matting. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7469–7478 (2019)

    Google Scholar 

  31. Zheng, Y., Kambhamettu, C.: Learning based digital matting. In: 2009 IEEE 12th International Con Computer Vision, pp. 889–896. IEEE (2009)

    Google Scholar 

  32. Zhong, Y., Li, B., Tang, L., Kuang, S., Wu, S., Ding, S.: Detecting camouflaged object in frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4504–4513 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China

    Rongsheng Luo, Changxin Gao & Nong Sang

  2. Wuhan National Laboratory For Optoelectronics, Huazhong University of Science and Technology, Wuhan, China

    Rukai Wei

Authors
  1. Rongsheng Luo

    You can also search for this author inPubMed Google Scholar

  2. Rukai Wei

    You can also search for this author inPubMed Google Scholar

  3. Changxin Gao

    You can also search for this author inPubMed Google Scholar

  4. Nong Sang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toNong Sang.

Editor information

Editors and Affiliations

  1. Kyushu Institute of Technology, Kitakyushu, Fukuoka, Japan

    Huimin Lu

  2. The University of Sydney, Sydney, NSW, Australia

    Michael Blumenstein

  3. Yonsei University, Seoul, Korea (Republic of)

    Sung-Bae Cho

  4. Chinese Academy of Sciences, Beijing, China

    Cheng-Lin Liu

  5. Osaka University, Osaka, Ibaraki, Japan

    Yasushi Yagi

  6. Kyushu Institute of Technology, Kitakyushu, Japan

    Tohru Kamiya

Rights and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, R., Wei, R., Gao, C., Sang, N. (2023). Frequency Information Matters for Image Matting. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14406. Springer, Cham. https://doi.org/10.1007/978-3-031-47634-1_7

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp