Overview
- Editors:
- Sharib Ali ORCID:https://orcid.org/0000-0003-1313-35420,
- Fons van der Sommen ORCID:https://orcid.org/0000-0002-3593-23561,
- Maureen van Eijnatten ORCID:https://orcid.org/0000-0001-9208-283X2,
- Bartłomiej W. Papież ORCID:https://orcid.org/0000-0002-8432-25113,
- Yueming Jin ORCID:https://orcid.org/0000-0003-3775-38774,
- …
- Iris Kolenbrander ORCID:https://orcid.org/0000-0002-0119-65305
- Sharib Ali
University of Leeds, Leeds, UK
You can also search for this editor inPubMed Google Scholar
- Fons van der Sommen
Eindhoven University of Technology, Eindhoven, The Netherlands
You can also search for this editor inPubMed Google Scholar
- Maureen van Eijnatten
Eindhoven University of Technology, Eindhoven, The Netherlands
You can also search for this editor inPubMed Google Scholar
- Bartłomiej W. Papież
University of Oxford, Oxford, UK
You can also search for this editor inPubMed Google Scholar
- Yueming Jin
National University of Singapore, Singapore, Singapore
You can also search for this editor inPubMed Google Scholar
- Iris Kolenbrander
Eindhoven University of Technology, Eindhoven, The Netherlands
You can also search for this editor inPubMed Google Scholar
Part of the book series:Lecture Notes in Computer Science (LNCS, volume 14295)
Included in the following conference series:
Conference proceedings info: CaPTion 2023.
This is a preview of subscription content,log in via an institution to check access.
Access this book
Tax calculation will be finalised at checkout
Other ways to access
About this book
The 11 papers presented at CaPTion 2023 were carefully reviewed and selected from 12 submissions. The workshop invites researchers to submit their work in the field of medical image analysis around the central theme of cancer and early cancer detection, progression, inflammation understanding, multimodality data, and computer-aided navigation.
Keywords
Table of contents (11 papers)
Front Matter
Pages i-xClassification
Front Matter
Pages 1-1A Deep Attention-Multiple Instance Learning Framework to Predict Survival of Soft-Tissue Sarcoma from Whole Slide Images
- Van-Linh Le, Audrey Michot, Amandine Crombé, Carine Ngo, Charles Honoré, Jean-Michel Coindre et al.
Pages 3-16Towards Real-Time Confirmation of Breast Cancer in the OR Using CNN-Based Raman Spectroscopy Classification
- David Grajales, William Le, Frédérick Dallaire, Guillaume Sheehy, Sandryne David, Trang Tran et al.
Pages 17-28Fully Automated CAD System for Lung Cancer Detection and Classification Using 3D Residual U-Net with multi-Region Proposal Network (mRPN) in CT Images
- Anum Masood, Usman Naseem, Mehwish Nasim
Pages 29-39Image Captioning for Automated Grading and Understanding of Ulcerative Colitis
- Flor Helena Valencia, Daniel Flores-Araiza, Obed Cerda, Venkataraman Subramanian, Thomas de Lange, Gilberto Ochoa-Ruiz et al.
Pages 40-51
Detection and Segmentation
Front Matter
Pages 53-53Multispectral 3D Masked Autoencoders for Anomaly Detection in Non-Contrast Enhanced Breast MRI
- Daniel M. Lang, Eli Schwartz, Cosmin I. Bercea, Raja Giryes, Julia A. Schnabel
Pages 55-67Non-redundant Combination of Hand-Crafted and Deep Learning Radiomics: Application to the Early Detection of Pancreatic Cancer
- Rebeca Vétil, Clément Abi-Nader, Alexandre Bône, Marie-Pierre Vullierme, Marc-Michel Rohé, Pietro Gori et al.
Pages 68-82Assessing the Performance of Deep Learning-Based Models for Prostate Cancer Segmentation Using Uncertainty Scores
- Pablo Cesar Quihui-Rubio, Daniel Flores-Araiza, Gilberto Ochoa-Ruiz, Miguel Gonzalez-Mendoza, Christian Mata
Pages 83-93MoSID: Modality-Specific Information Disentanglement from Multi-parametric MRI for Breast Tumor Segmentation
- Jiadong Zhang, Qianqian Chen, Luping Zhou, Zhiming Cui, Fei Gao, Zhenhui Li et al.
Pages 94-104
Cancer/Early cancer Surveillance
Front Matter
Pages 105-105Colonoscopy Coverage Revisited: Identifying Scanning Gaps in Real-Time
- George Leifman, Idan Kligvasser, Roman Goldenberg, Ehud Rivlin, Michael Elad
Pages 107-118ColNav: Real-Time Colon Navigation for Colonoscopy
- Netanel Frank, Erez Posner, Emmanuelle Muhlethaler, Adi Zholkover, Moshe Bouhnik
Pages 119-131Modeling Barrett’s Esophagus Progression Using Geometric Variational Autoencoders
- Vivien van Veldhuizen, Sharvaree Vadgama, Onno de Boer, Sybren Meijer, Erik J. Bekkers
Pages 132-142
Back Matter
Pages 143-144
Other volumes
Cancer Prevention Through Early Detection
Editors and Affiliations
University of Leeds, Leeds, UK
Sharib Ali
Eindhoven University of Technology, Eindhoven, The Netherlands
Fons van der Sommen, Maureen van Eijnatten, Iris Kolenbrander
University of Oxford, Oxford, UK
Bartłomiej W. Papież
National University of Singapore, Singapore, Singapore
Yueming Jin
Bibliographic Information
Book Title:Cancer Prevention Through Early Detection
Book Subtitle:Second International Workshop, CaPTion 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings
Editors:Sharib Ali, Fons van der Sommen, Maureen van Eijnatten, Bartłomiej W. Papież, Yueming Jin, Iris Kolenbrander
Series Title:Lecture Notes in Computer Science
DOI:https://doi.org/10.1007/978-3-031-45350-2
Publisher:Springer Cham
eBook Packages:Computer Science,Computer Science (R0)
Copyright Information:The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Softcover ISBN:978-3-031-45349-6Published: 07 October 2023
eBook ISBN:978-3-031-45350-2Published: 06 October 2023
Series ISSN: 0302-9743
Series E-ISSN: 1611-3349
Edition Number:1
Number of Pages:X, 144
Number of Illustrations:1 b/w illustrations, 55 illustrations in colour
Topics:Computer Imaging, Vision, Pattern Recognition and Graphics,Machine Learning,Computing Milieux,Computer Applications