Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

An Augmented MetiTarski Dataset for Real Quantifier Elimination Using Machine Learning

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 14101))

Included in the following conference series:

  • 480Accesses

Abstract

We contribute a new dataset composed of more than 41K MetiTarski challenges that can be used to investigate applications of machine learning (ML) in determining efficient variable orderings in Cylindrical Algebraic Decomposition. The proposed dataset aims to address inadvertent bias issues present in prior benchmarks, paving the way to development of robust, easy-to-generalize ML models.

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR00112290064. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-valued special functions. J. Autom. Reasoning44, 175–205 (2010)

    Article MathSciNet MATH  Google Scholar 

  2. England, M., Florescu, D.: Comparing machine learning models to choose the variable ordering for cylindrical algebraic decomposition. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp. 93–108. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-23250-4_7

    Chapter  Google Scholar 

  3. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: International Conference on Learning Representations (2019).https://openreview.net/forum?id=Bygh9j09KX

  4. Geirhos, R., Temme, C.R., Rauber, J., Schütt, H.H., Bethge, M., Wichmann, F.A.: Generalisation in humans and deep neural networks. Adv. Neur. Inf. Proc.31 (2018)

    Google Scholar 

  5. Huang, Z., England, M., Wilson, D.J., Bridge, J., Davenport, J.H., Paulson, L.C.: Using machine learning to improve CAD. Maths. in C.S.13(4), 461–488 (2019)

    Google Scholar 

  6. Kawaguchi, K., Kaelbling, L.P., Bengio, Y.: Generalization in deep learning. arXiv preprintarXiv:1710.05468 (2017)

  7. Passmore, G.O., Paulson, L.C., de Moura, L.: Real algebraic strategies for metitarski proofs. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 358–370. Springer, Heidelberg (2012).https://doi.org/10.1007/978-3-642-31374-5_24

    Chapter  Google Scholar 

  8. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw.20(1), 61–80 (2009)

    Article  Google Scholar 

  9. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Imandra Inc., Austin, TX, 78704, USA

    John Hester & Grant Passmore

  2. SRI International, Menlo Park, CA, 94025, USA

    Briland Hitaj, Sam Owre, Natarajan Shankar & Eric Yeh

Authors
  1. John Hester

    You can also search for this author inPubMed Google Scholar

  2. Briland Hitaj

    You can also search for this author inPubMed Google Scholar

  3. Grant Passmore

    You can also search for this author inPubMed Google Scholar

  4. Sam Owre

    You can also search for this author inPubMed Google Scholar

  5. Natarajan Shankar

    You can also search for this author inPubMed Google Scholar

  6. Eric Yeh

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toGrant Passmore.

Editor information

Editors and Affiliations

  1. ENSIIE, Evry, France

    Catherine Dubois

  2. University of Birmingham, Birmingham, UK

    Manfred Kerber

Rights and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hester, J., Hitaj, B., Passmore, G., Owre, S., Shankar, N., Yeh, E. (2023). An Augmented MetiTarski Dataset for Real Quantifier Elimination Using Machine Learning. In: Dubois, C., Kerber, M. (eds) Intelligent Computer Mathematics. CICM 2023. Lecture Notes in Computer Science(), vol 14101. Springer, Cham. https://doi.org/10.1007/978-3-031-42753-4_21

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp