Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Characterization of Pedestrian Contact Interaction Trajectories

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 14073))

Included in the following conference series:

Abstract

A spreading process can be observed when a particular behavior, substance, or disease spreads through a population over time in social and biological systems. It is widely believed that contact interactions among individual entities play an essential role in the spreading process. Although the contact interactions are often influenced by geometrical conditions, little attention has been paid to understand their effects especially on contact duration among pedestrians. To examine how the pedestrian flow setups affect contact duration distribution, we have analyzed trajectories of pedestrians in contact interactions collected from pedestrian flow experiments of uni-, bi- and multi-directional setups. Based on standardized maximal distance, we have classified types of motions observed in the contact interactions. We have found that almost all motion in the unidirectional flow setup can be characterized as subdiffusive motion, suggesting that the empirically measured contact duration tends to be longer than one estimated by ballistic motion assumption. However, Brownian motion is more frequently observed from other flow setups, indicating that the contact duration estimated by ballistic motion assumption shows good agreement with the empirically measured one. Furthermore, when the difference in relative speed distributions between the experimental data and ballistic motion assumption is larger, more subdiffusive motions are observed. This study also has practical implications. For instance, it highlights that geometrical conditions yielding smaller difference in the relative speed distributions are preferred when diseases can be transmitted through face-to-face interactions.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. Samar, P.M., Wicker, S.B.: Link dynamics and protocol design in a multihop mobile environment. IEEE Trans. Mob. Comput.5, 1156–1172 (2006)

    Article  Google Scholar 

  2. Wu, Y.T., Liao, W., Tsao, C.L., Lin, T.N.: Impact of node mobility on link duration in multihop mobile networks. IEEE Trans. Veh. Technol.58, 2435–2442 (2008)

    Google Scholar 

  3. Hu, H., Nigmatulina, K., Eckhoff, P.: The scaling of contact rates with population density for the infectious disease models. Math. Biosci.244, 125–134 (2013)

    Article MathSciNet MATH  Google Scholar 

  4. Manlove, K., et al.: Defining an epidemiological landscape that connects movement ecology to pathogen transmission and pace-of-life. Ecol. Lett.25, 1760–1782 (2022)

    Article  Google Scholar 

  5. Rast, M.P.: Contact statistics in populations of noninteracting random walkers in two dimensions. Phys. Rev. E105, 014103 (2022)

    Article MathSciNet  Google Scholar 

  6. Saxton, M.J., Jacobson, K.: Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct.26, 373–399 (1997)

    Article  Google Scholar 

  7. Manzo, C., Garcia-Parajo, M.F.: A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys.78, 124601 (2015)

    Article  Google Scholar 

  8. Shen, H., et al.: Single particle tracking: from theory to biophysical applications. Chem. Rev.117, 7331–7376 (2017)

    Article  Google Scholar 

  9. Benhamou, S.: How many animals really do the Lévy walk? Ecology88, 1962–1969 (2007)

    Article  Google Scholar 

  10. Edelhoff, H., Signer, J., Balkenhol, N.: Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Mov. Ecol.4, 21 (2016)

    Article  Google Scholar 

  11. Getz, W.M., Saltz, D.: A framework for generating and analyzing movement paths on ecological landscapes. Proc. Natl. Acad. Sci.105, 19066–19071 (2008)

    Article  Google Scholar 

  12. Rutten, P., Lees, M.H., Klous, S., Heesterbeek, H., Sloot, P.: Modelling the dynamic relationship between spread of infection and observed crowd movement patterns at large scale events. Sci. Rep.12, 14825 (2022)

    Article  Google Scholar 

  13. Wilber, M.Q., et al.: A model for leveraging animal movement to understand spatio-temporal disease dynamics. Ecol. Lett.25, 1290–1304 (2022)

    Article  Google Scholar 

  14. Qian, H., Sheetz, M.P., Elson, E.L.: Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J.60, 910–921 (1991)

    Article  Google Scholar 

  15. Michalet, X.: Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E82, 041914 (2010)

    Article MathSciNet  Google Scholar 

  16. Goulian, M., Simon, S.M.: Tracking single proteins within cells. Biophys. J.79, 2188–2198 (2000)

    Article  Google Scholar 

  17. Hubicka, K., Janczura, J.: Time-dependent classification of protein diffusion types: a statistical detection of mean-squared-displacement exponent transitions. Phys. Rev. E1010, 022107 (2020)

    Article  Google Scholar 

  18. Murakami, H., Feliciani, C., Nishinari, K.: Lévy walk process in self-organization of pedestrian crowds. J. R. Soc. Interface16, 20180939 (2019)

    Article  Google Scholar 

  19. Murakami, H., Feliciani, C., Nishiyama, Y., Nishinari, K.: Mutual anticipation can contribute to self-organization in human crowds. Sci. Adv.7, eabe7758 (2021)

    Article  Google Scholar 

  20. Briane, V., Vimond, M., Kervrann, C.: An adaptive statistical test to detect non Brownian diffusion from particle trajectories. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 972–975, IEEE, Prague (2016)

    Google Scholar 

  21. Briane, V., Kervrann, C., Vimond, M.: Statistical analysis of particle trajectories in living cells. Phys. Rev. E97, 062121 (2018)

    Article  Google Scholar 

  22. Janczura, J., Kowalek, P., Loch-Olszewska, H., Szwabiński, J., Weron, A.: Classification of particle trajectories in living cells: machine learning versus statistical testing hypothesis for fractional anomalous diffusion. Phys. Rev. E102, 032402 (2020)

    Article  Google Scholar 

  23. Kepten, E., Weron, A., Sikora, G., Burnecki, K., Garini, Y.: Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments. PLoS ONE10, e0117722 (2015)

    Article  Google Scholar 

  24. Burnecki, K., Kepten, E., Garini, Y., Sikora, G., Weron, A.: Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors-An alternative approach. Sci. Rep.10, 11306 (2015)

    Article  Google Scholar 

  25. Weron, A., Janczura, J., Boryczka, E., Sungkaworn, T., Calebiro, D.: Statistical testing approach for fractional anomalous diffusion classification. Phys. Rev. E99, 042149 (2019)

    Article  Google Scholar 

  26. Janczura, J., Burnecki, K., Muszkieta, M., Stanislavsky, A., Weron, A.: Classification of random trajectories based on the fractional Lévy stable motion. Chaos, Solitons Fractals154, 111606 (2022)

    Article  Google Scholar 

  27. Kowalek, P., Loch-Olszewska, H., Łaszczuk, Ł, Opała, J., Szwabiński, J.: Boosting the performance of anomalous diffusion classifiers with the proper choice of features. J. Phys. A: Math. Theor.55, 244005 (2022)

    Article MathSciNet MATH  Google Scholar 

  28. Holl, S.: Methoden für die Bemessung der Leistungsfähigkeit multidirektional genutzter Fußverkehrsanlagen. Bergische Universität, Wuppertal (2016)

    Google Scholar 

  29. Cao, S., Seyfried, A., Zhang, J., Holl, S., Song, W.: Fundamental diagrams for multidirectional pedestrian flows. J. Stat. Mech: Theory Exp.2017, 033404 (2017)

    Article  Google Scholar 

  30. Data archive of experimental data from studies about pedestrian dynamics.https://ped.fz-juelich.de/da/doku.php. Accessed 1 Mar 2023

  31. Han, E., et al.: Lessons learnt from easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe. Lancet396, 1525–1534 (2020)

    Article  Google Scholar 

  32. Ronchi, E., Lovreglio, R.: EXPOSED: An occupant exposure model for confined spaces to retrofit crowd models during a pandemic. Saf. Sci.130, 104834 (2020)

    Article  Google Scholar 

  33. Garcia, W., Mendez, S., Fray, B., Nicolas, A.: Model-based assessment of the risks of viral transmission in non-confined crowds. Saf. Sci.144, 105453 (2021)

    Article  Google Scholar 

  34. Chkhaidze, K., et al.: Spatially constrained tumour growth affects the patterns of clonal selection and neutral drift in cancer genomic data. PLoS Comput. Biol.15, e1007243 (2019)

    Article  Google Scholar 

  35. Flam-Shepherd, D., Zhu, K., Aspuru-Guzik, A.: Language models can learn complex molecular distributions. Nat. Commun.13, 3293 (2022)

    Article  Google Scholar 

  36. Kowalek, P., Loch-Olszewska, H., Szwabiński, J.: Classification of diffusion modes in single-particle tracking data: feature-based versus deep-learning approach. Phys. Rev. E100, 032410 (2019)

    Article  Google Scholar 

  37. Wagner, T., Kroll, A., Haramagatti, C.R., Lipinski, H.G., Wiemann, M.: Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments. PLoS ONE12, e0170165 (2017)

    Article  Google Scholar 

  38. Pinholt, H.D., Bohr, S.S.R., Iversen, J.F., Boomsma, W., Hatzakis, N.S.: Single-particle diffusional fingerprinting: a machine-learning framework for quantitative analysis of heterogeneous diffusion. Proc. Natl. Acad. Sci.118, e2104624118 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Ministry of Education (MOE) Singapore under its Academic Research Fund Tier 1 Program Grant No. RG12/21 MoE Tier 1.

Author information

Authors and Affiliations

  1. Nanyang Technological University, Singapore, 639798, Singapore

    Jaeyoung Kwak & Wentong Cai

  2. University of Amsterdam, 1098XH, Amsterdam, The Netherlands

    Michael H. Lees

Authors
  1. Jaeyoung Kwak

    You can also search for this author inPubMed Google Scholar

  2. Michael H. Lees

    You can also search for this author inPubMed Google Scholar

  3. Wentong Cai

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJaeyoung Kwak.

Editor information

Editors and Affiliations

  1. Czech Technical University in Prague, Prague, Czech Republic

    Jiří Mikyška

  2. University of Amsterdam, Amsterdam, The Netherlands

    Clélia de Mulatier

  3. AGH University of Science and Technology, Krakow, Poland

    Maciej Paszynski

  4. University of Amsterdam, Amsterdam, The Netherlands

    Valeria V. Krzhizhanovskaya

  5. University of Tennessee at Knoxville, Knoxville, TN, USA

    Jack J. Dongarra

  6. University of Amsterdam, Amsterdam, The Netherlands

    Peter M.A. Sloot

Rights and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwak, J., Lees, M.H., Cai, W. (2023). Characterization of Pedestrian Contact Interaction Trajectories. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14073. Springer, Cham. https://doi.org/10.1007/978-3-031-35995-8_2

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp