Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Preliminary Study on the Identification of Diseases by Electrocardiography Sensors’ Data

  • Conference paper
  • First Online:

Abstract

An electrocardiogram (ECG) is a simple test that checks the heart’s rhythm and electrical activity and can be used by specialists to detect anomalies that could be linked to diseases. This paper intends to describe the results of several artificial intelligence methods created to automate identifying and classifying potential cardiovascular diseases through electrocardiogram signals. The ECG data utilized was collected from a total of 46 individuals (24 females, aged 26 to 90, and 22 males, aged 19 to 88) using a BITalino (r)evolution device and the OpenSignals (r)evolution software. Each ECG recording contains around 60 s, where, during 30 s, the individuals were in a standing position and seated down during the remaining 30 s. The best performance in identifying cardiovascular diseases with ECG data was achieved with the Naive Bays classifier, reporting an accuracy of 81.36%, a precision of 26.48%, a recall of 28.16%, and an F1-Score of 27.29%.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. Abdulhussein, A.A., Hassen, O.A., Gupta, C., Virmani, D., Nair, A., Rani, P.: Health monitoring catalogue based on human activity classification using machine learning. Int. J. Electr. Comput. Eng. (2088–8708)12, 3970 (2022)

    Google Scholar 

  2. Ahsan, M.M., Siddique, Z.: Machine learning-based heart disease diagnosis: a systematic literature review. Artif. Intell. Med., 102289 (2022)

    Google Scholar 

  3. Alarsan, F.I., Younes, M.: Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. J. Big Data6(1), 1–15 (2019).https://doi.org/10.1186/s40537-019-0244-x

    Article  Google Scholar 

  4. Alazzam, H., Alsmady, A., Shorman, A.A.: Supervised detection of IoT botnet attacks. In: Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems, pp. 1–6 (2019)

    Google Scholar 

  5. Ali, F., et al.: A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Inf. Fusion63, 208–222 (2020)

    Article  Google Scholar 

  6. Almuhaideb, S., Menai, M.E.B.: Impact of preprocessing on medical data classification. Front. Comp. Sci.10(6), 1082–1102 (2016).https://doi.org/10.1007/s11704-016-5203-5

    Article  Google Scholar 

  7. Amarappa, S., Sathyanarayana, S.V.: Data classification using support vector machine (SVM), a simplified approach. Int. J. Electron. Comput. Sci. Eng.3, 435–445 (2014)

    Google Scholar 

  8. Balakumar, P., Maung-U, K., Jagadeesh, G.: Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res.113, 600–609 (2016)

    Article  Google Scholar 

  9. Batista, D., Plácido da Silva, H., Fred, A., Moreira, C., Reis, M., Ferreira, H.A.: Benchmarking of the BITalino biomedical toolkit against an established gold standard. Healthc. Technol. Lett.6, 32–36 (2019)

    Article  Google Scholar 

  10. Celin, S., Vasanth, K.: ECG signal classification using various machine learning techniques. J. Med. Syst.42, 1–11 (2018)

    Article  Google Scholar 

  11. Chio, C., Freeman, D.: Machine Learning and Security: Protecting Systems with Data and Algorithms. O’Reilly Media, Inc. (2018)

    Google Scholar 

  12. Da Silva, H.P., Guerreiro, J., Lourenço, A., Fred, A.L., Martins, R.: BITalino: a novel hardware framework for physiological computing. In: International Conference on Physiological Computing Systems (PhyCS), pp. 246–253 (2014)

    Google Scholar 

  13. Duarte, R.P., et al.: Extraction of notable points from ECG data: a description of a dataset related to 30-s seated and 30-s stand up. Data Brief46, 108874 (2023).https://doi.org/10.1016/j.dib.2022.108874

    Article  Google Scholar 

  14. Escobar, L.J.V., Salinas, S.A.: e-Health prototype system for cardiac telemonitoring. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4399–4402. IEEE, Orlando, FL, USA (2016)

    Google Scholar 

  15. García, V., Mollineda, R.A., Sánchez, J.S.: On the k-NN performance in a challenging scenario of imbalance and overlapping. Pattern Anal. Appl.11, 269–280 (2008)

    Article MathSciNet  Google Scholar 

  16. Gardes, J., Maldivi, C., Boisset, D., Aubourg, T., Vuillerme, N., Demongeot, J.: Maxwell®: an unsupervised learning approach for 5P medicine. Stud. Health Technol. Inf.264, 1464–1465 (2019).https://doi.org/10.3233/SHTI190486

    Article  Google Scholar 

  17. Gautam, M.K., Giri, V.K.: A neural network approach and wavelet analysis for ECG classification. In: 2016 IEEE International Conference on Engineering and Technology (ICETECH), pp. 1136–1141. IEEE, Coimbatore, India (2016)

    Google Scholar 

  18. Gupta, S.: Evaluation of ECG abnormalities in patients with asymptomatic type 2 diabetes mellitus. JCDR11, OC39 (2017).https://doi.org/10.7860/JCDR/2017/24882.9740

    Article  Google Scholar 

  19. Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class AdaBoost. Statistics and Its Interface2, 349–360 (2009).https://doi.org/10.4310/SII.2009.v2.n3.a8

    Article MathSciNet  Google Scholar 

  20. Haykin, S.: Neural Networks: A Comprehensive Foundation, 1st edn. Prentice Hall PTR, USA (1994)

    Google Scholar 

  21. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw.13, 415–425 (2002)

    Article  Google Scholar 

  22. Pires, I.M., Garcia, N.M., Pires, I., Pinto, R., Silva, P.: ECG data related to 30-s seated and 30-s standing for 5P-Medicine project. Mendeley Data (2022).https://data.mendeley.com/datasets/z4bbj9rcwd/1

  23. Jindal, H., Agrawal, S., Khera, R., Jain, R., Nagrath, P.: Heart disease prediction using machine learning algorithms. In: IOP Conference Series: Materials Science and Engineering, p. 012072. IOP Publishing (2021)

    Google Scholar 

  24. Kakria, P., Tripathi, N.K., Kitipawang, P.: A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. Int. J. Telemed. Appl.2015, 1–11 (2015).https://doi.org/10.1155/2015/373474

    Article  Google Scholar 

  25. Kalkstein, N., Kinar, Y., Na’aman, M., Neumark, N., Akiva, P.: Using machine learning to detect problems in ECG data collection. In: 2011 Computing in Cardiology, pp. 437–440. IEEE (2011)

    Google Scholar 

  26. Kannathal, N., Acharya, U.R., Ng, E.Y.K., Krishnan, S.M., Min, L.C., Laxminarayan, S.: Cardiac health diagnosis using data fusion of cardiovascular and haemodynamic signals. Comput. Methods Programs Biomed.82, 87–96 (2006).https://doi.org/10.1016/j.cmpb.2006.01.009

    Article  Google Scholar 

  27. Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  28. Pires, I.: Jupyter Notebooks ECG Data (2022)

    Google Scholar 

  29. Pires, I.M., et al.: Mobile 5P-medicine approach for cardiovascular patients. Sensors21, 6986 (2021).https://doi.org/10.3390/s21216986

    Article  Google Scholar 

  30. Pires, I.M., Garcia, N.M., Flórez-Revuelta, F.: Multi-sensor data fusion techniques for the identification of activities of daily living using mobile devices. In: Proceedings of the ECMLPKDD (2015)

    Google Scholar 

  31. Prescott, G.J., Garthwaite, P.H.: A simple Bayesian analysis of misclassified binary data with a validation substudy. Biometrics58, 454–458 (2002)

    Article MathSciNet  Google Scholar 

  32. Ramaraj, E.: A novel deep learning based gated recurrent unit with extreme learning machine for electrocardiogram (ECG) signal recognition. Biomed. Signal Process. Control68, 102779 (2021)

    Article  Google Scholar 

  33. Rivas, R.G., Domínguez, J.J.G., Marnane, W.P., Twomey, N., Temko, A.: Real-time allergy detection. In: 2013 IEEE 8th International Symposium on Intelligent Signal Processing, pp. 21–26. IEEE (2013)

    Google Scholar 

  34. Swapna, G., Soman, K.P., Vinayakumar, R.: Diabetes detection using ECG signals: an overview. In: Dash, S., Acharya, B.R., Mittal, M., Abraham, A., Kelemen, A. (eds.) Deep Learning Techniques for Biomedical and Health Informatics. SBD, vol. 68, pp. 299–327. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-33966-1_14

    Chapter  Google Scholar 

  35. Tran, T.M., Le, X.-M.T., Nguyen, H.T., Huynh, V.-N.: A novel non-parametric method for time series classification based on k-nearest neighbors and dynamic time warping barycenter averaging. Eng. Appl. Artif. Intell.78, 173–185 (2019)

    Article  Google Scholar 

  36. Twomey, N., Temko, A., Hourihane, J.O., Marnane, W.P.: Allergy detection with statistical modelling of HRV-based non-reaction baseline features. In: Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, pp. 1–5 (2011)

    Google Scholar 

  37. Villasana, M.V., Sá, J., Pires, I.M., Albuquerque, C.: The New Era of Technology Applied to Cardiovascular Patients: State-of-the-Art and Questionnaire Applied for a System Proposal, pp. 267–278. Springer International Publishing, Cham (2021)

    Google Scholar 

  38. Vogel, B., et al.: The Lancet women and cardiovascular disease commission: reducing the global burden by 2030. The Lancet397, 2385–2438 (2021)

    Article  Google Scholar 

  39. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive bayes: aggregating one-dependence estimators. Mach. Learn.58, 5–24 (2005).https://doi.org/10.1007/s10994-005-4258-6

    Article  Google Scholar 

  40. Neurophysiological Data Analysis with NeuroKit2 — NeuroKit2 0.2.1 documentation.https://neuropsychology.github.io/NeuroKit/. Accessed 10 Jul 2022

Download references

Acknowledgments

This work is funded by FCT/MEC through national funds and co-funded by FEDER – PT2020 partnership agreement under the projectUIDB/50008/2020.

This work is also funded by FCT/MEC through national funds and co-funded by FEDER – PT2020 partnership agreement under the projectUIDB/00308/2020.

This article is based upon work from COST Action CA19101 - Determinants of Physical Activities in Settings (DE-PASS), supported by COST (European Cooperation in Science and Technology). More information onwww.cost.eu.

Author information

Authors and Affiliations

  1. Escola de Ciências E Tecnologia, University of Trás-Os-Montes E Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal

    Rui João Pinto, Pedro Miguel Silva, Rui Pedro Duarte, Francisco Alexandre Marinho, António Jorge Gouveia & Norberto Jorge Gonçalves

  2. Polytechnic of Leiria, Leiria, Portugal

    Paulo Jorge Coelho

  3. Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Coimbra, Portugal

    Paulo Jorge Coelho

  4. Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, 1000, Skopje, Macedonia

    Eftim Zdravevski & Petre Lameski

  5. Instituto de Telecomunicações, 6201-001, Covilhã, Portugal

    Nuno M. Garcia & Ivan Miguel Pires

  6. Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal

    Nuno M. Garcia

  7. Polytechnic Institute of Santarém, Santarém, Portugal

    Ivan Miguel Pires

Authors
  1. Rui João Pinto

    You can also search for this author inPubMed Google Scholar

  2. Pedro Miguel Silva

    You can also search for this author inPubMed Google Scholar

  3. Rui Pedro Duarte

    You can also search for this author inPubMed Google Scholar

  4. Francisco Alexandre Marinho

    You can also search for this author inPubMed Google Scholar

  5. António Jorge Gouveia

    You can also search for this author inPubMed Google Scholar

  6. Norberto Jorge Gonçalves

    You can also search for this author inPubMed Google Scholar

  7. Paulo Jorge Coelho

    You can also search for this author inPubMed Google Scholar

  8. Eftim Zdravevski

    You can also search for this author inPubMed Google Scholar

  9. Petre Lameski

    You can also search for this author inPubMed Google Scholar

  10. Nuno M. Garcia

    You can also search for this author inPubMed Google Scholar

  11. Ivan Miguel Pires

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toIvan Miguel Pires.

Editor information

Editors and Affiliations

  1. University of Granada, Granada, Spain

    Ignacio Rojas

  2. University of Granada, Granada, Spain

    Olga Valenzuela

  3. University of Granada, Granada, Spain

    Fernando Rojas Ruiz

  4. University of Granada, Granada, Spain

    Luis Javier Herrera

  5. University of Granada, Granada, Spain

    Francisco Ortuño

Rights and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinto, R.J.et al. (2023). Preliminary Study on the Identification of Diseases by Electrocardiography Sensors’ Data. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_23

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp