Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Removing the Field Size Loss from Duc et al.’s Conjectured Bound for Masked Encodings

  • Conference paper
  • First Online:

Abstract

AtEurocrypt 2015, Ducet al. conjectured that the success rate of a side-channel attack targeting an intermediate computation encoded in a linear secret-sharing, a.k.a.masking with\(d+1\) shares, could be inferred by measuring the mutual information between the leakage and each share separately. This way, security bounds can be derived without having to mount the complete attack. So far, the best proven bounds for masked encodings werenearly tight with the conjecture, up to a constant factor overhead equal to the field size, which may still give loose security guarantees compared to actual attacks. In this paper, we improve upon the state-of-the-art bounds by removing the field size loss, in the cases of Boolean masking and arithmetic masking modulo a power of two. As an example, when masking in the AES field, our new bound outperforms the former ones by a factor\(256\). Moreover, we provide theoretical hints that similar results could hold for masking in other fields as well.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    i.e., the number of shares is\(d+1\) if the independence assumption is met.

  2. 2.

    e.g., Young-Minkowski’s convolution inequality for the TV [22] or Plancherel’s formula combined with the convolution theorem for the EN [16].

  3. 3.

    For cryptographic reasons, the vast majority of the intermediate computations are uniformly distributed, including the inputs and outputs of Sbox — provided that the plaintext and the key are uniformly distributed as well. The only non-uniform intermediate computations of a block cipher may be the potential intermediate calculations of an Sbox.

  4. 4.

    We assume without loss of generality that\(\textsf{m}\) has full support over\(\mathcal {Y}\).

  5. 5.

    The interested reader may find a similar convexity result, stated in terms of statistical distance, in the works of Dziembowskiet al.  [12, Cor. 2].

  6. 6.

    We have afterwards noticed that the proof of Masureet al. ’s bound [22, Prop. 2, Thm. 3] was suboptimal, so the bound of Masureet al. is actually slightly better than Itoet al. ’s one by a factor\(\frac{1}{2}\). That is why in the remaining of this paper, we mainly compare against the bound of Masureet al..

  7. 7.

    For low noise levels, it gets gradually closer to one, but this gain has limited practical relevance since masking only provides high security with sufficient noise.

  8. 8.
  9. 9.

    This condition is verified retrospectively on Fig. 3.

References

  1. Azouaoui, M., et al.: A systematic appraisal of side channel evaluation strategies. In: van der Merwe, T., Mitchell, C., Mehrnezhad, M. (eds.) SSR 2020. LNCS, vol. 12529, pp. 46–66. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-64357-7_3

    Chapter  Google Scholar 

  2. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-channel analysis and introduction to ASCAD database. J. Crypt. Eng.10(2), 163–188 (2019).https://doi.org/10.1007/s13389-019-00220-8

    Article  Google Scholar 

  3. Bronchain, O., Standaert, F.X.: Side-channel countermeasures’ dissection. IACR Transactions on Cryptographic Hardware and Embedded Systems2020(2), 1–25 (2020).https://doi.org/10.13154/tches.v2020.i2.1-25,https://tches.iacr.org/index.php/TCHES/article/view/8542

  4. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999).https://doi.org/10.1007/3-540-48405-1_26

    Chapter  Google Scholar 

  5. Cheng, F.: Generalization of Mrs. Gerber’s lemma. Commun. Inf. Syst.14(2), 79–86 (2014).https://doi.org/10.4310/cis.2014.v14.n2.a1

    Article MathSciNet MATH  Google Scholar 

  6. Cover, T.M., Thomas, J.A.: Elements of information theory (2 ed.). Wiley (2006)

    Google Scholar 

  7. de Chérisey, E., Guilley, S., Rioul, O., Piantanida, P.: Best information is most successful. IACR Transactions on Cryptographic Hardware and Embedded Systems2019(2), 49–79 (2019).https://doi.org/10.13154/tches.v2019.i2.49-79,https://tches.iacr.org/index.php/TCHES/article/view/7385

  8. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014).https://doi.org/10.1007/978-3-642-55220-5_24

    Chapter  Google Scholar 

  9. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429. Springer, Heidelberg (2015).https://doi.org/10.1007/978-3-662-46800-5_16

    Chapter  Google Scholar 

  10. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete (or how to evaluate the security of any leaking device), extended version. J. Crypt.32(4), 1263–1297 (2018).https://doi.org/10.1007/s00145-018-9277-0

    Article MathSciNet MATH  Google Scholar 

  11. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 159–188. Springer, Heidelberg (2015).https://doi.org/10.1007/978-3-662-46803-6_6

    Chapter  Google Scholar 

  12. Dziembowski, S., Faust, S., Skórski, M.: Optimal amplification of noisy leakages. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 291–318. Springer, Heidelberg (2016).https://doi.org/10.1007/978-3-662-49099-0_11

    Chapter MATH  Google Scholar 

  13. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication’’ method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999).https://doi.org/10.1007/3-540-48059-5_15

    Chapter MATH  Google Scholar 

  14. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003).https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  15. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003).https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  16. Ito, A., Ueno, R., Homma, N.: On the success rate of side-channel attacks on masked implementations: information-theoretical bounds and their practical usage. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7–11, 2022. pp. 1521–1535. ACM (2022).https://doi.org/10.1145/3548606.3560579

  17. Jog, V.S.: The entropy power inequality and Mrs. gerber’s lemma for groups of order 2\({}^{\text{ n }}\). IEEE Trans. Inf. Theory60(7), 3773–3786 (2014).https://doi.org/10.1109/TIT.2014.2317692

    Article MathSciNet MATH  Google Scholar 

  18. Liu, Y., Cheng, W., Guilley, S., Rioul, O.: On conditional alpha-information and its application to side-channel analysis. In: ITW, pp. 1–6. IEEE (2021)

    Google Scholar 

  19. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016).https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  20. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: theory of majorization and its applications. Springer Series in Statistics (1980)

    Google Scholar 

  21. Masure, L., Cristiani, V., Lecomte, M., Standaert, F.: Don’t learn what you already know scheme-aware modeling for profiling side-channel analysis against masking. IACR Trans. Cryptogr. Hardw. Embed. Syst.2023(1), 32–59 (2023).https://doi.org/10.46586/tches.v2023.i1.32-59

    Article  Google Scholar 

  22. Masure, L., Rioul, O., Standaert, F.X.: A nearly tight proof of Duc et al’.s conjectured security bound for masked implementations. In: Buhan, I., Schneider, T. (eds.) Smart Card Research and Advanced Applications, pp. 69–81. Springer International Publishing, Cham (2023).https://doi.org/10.1007/978-3-031-25319-5_4

  23. Prest, T., Goudarzi, D., Martinelli, A., Passelègue, A.: Unifying leakage models on a rényi day. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 683–712. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-26948-7_24

    Chapter  Google Scholar 

  24. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013).https://doi.org/10.1007/978-3-642-38348-9_9

    Chapter  Google Scholar 

  25. Rioul, O.: What is randomness? The interplay between alpha entropies, total variation and guessing. Phys. Sci. Forum5(1) (2022).https://doi.org/10.3390/psf2022005030,https://www.mdpi.com/2673-9984/5/1/30

  26. Sason, I., Verdú, S.: Upper bounds on the relative entropy and Rényi divergence as a function of total variation distance for finite alphabets. In: 2015 IEEE Information Theory Workshop - Fall (ITW), Jeju Island, South Korea, October 11–15, 2015, pp. 214–218. IEEE (2015).https://doi.org/10.1109/ITWF.2015.7360766

  27. Touchette, H.: Legendre-Fenchel transforms in a nutshell (2005).https://www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2019/01/or706-LF-transform-1.pdf

  28. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 282–296. Springer, Heidelberg (2014).https://doi.org/10.1007/978-3-662-45611-8_15

    Chapter  Google Scholar 

  29. Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive chosen-message side-channel attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199. Springer, Heidelberg (2010).https://doi.org/10.1007/978-3-642-13708-2_12

    Chapter  Google Scholar 

  30. Wyner, A.D., Ziv, J.: A theorem on the entropy of certain binary sequences and applications-I. IEEE Trans. Inf. Theory19, 769–772 (1973)

    Article MathSciNet MATH  Google Scholar 

Download references

Acknowledgments

François-Xavier Standaert is a Senior Research Associate of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in part by the ERC project number 724725 (acronym SWORD). This work has also partly benefited from the bilateral MESRI-BMBF project “APRIORI” from the ANR cybersecurity 2020 call. The authors also acknowledge financial support from the French national Bank (BPI) under Securyzr-V grant (Contract DOS0144216/00), a RISC-V centric platform integrating security co-processors.

Author information

Authors and Affiliations

  1. LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France

    Julien Béguinot, Wei Cheng, Sylvain Guilley, Yi Liu & Olivier Rioul

  2. Secure-IC, Paris, France

    Wei Cheng & Sylvain Guilley

  3. ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium

    Loïc Masure & François-Xavier Standaert

Authors
  1. Julien Béguinot

    You can also search for this author inPubMed Google Scholar

  2. Wei Cheng

    You can also search for this author inPubMed Google Scholar

  3. Sylvain Guilley

    You can also search for this author inPubMed Google Scholar

  4. Yi Liu

    You can also search for this author inPubMed Google Scholar

  5. Loïc Masure

    You can also search for this author inPubMed Google Scholar

  6. Olivier Rioul

    You can also search for this author inPubMed Google Scholar

  7. François-Xavier Standaert

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toLoïc Masure.

Editor information

Editors and Affiliations

  1. University of Passau, Passau, Germany

    Elif Bilge Kavun

  2. Technical University of Munich, Munich, Germany

    Michael Pehl

Appendices

A Proof of Proposition3

$$\begin{aligned} \mathop {\mathrm {\textsf{MI}}}\limits \!\left( Y ; \textbf{L}\right)&\le 1 - H_b\Bigg ( \frac{1}{2} - 2^d \prod _{i=0}^{d} \biggl ( \frac{1}{2} - H_b^{-1} \big (1 - \mathop {\mathrm {\textsf{MI}}}\limits \!\left( Y_i ; \textbf{L}\right) \big ) \biggl ) \Bigg ) \\&= \frac{2 \log (e)}{4} \prod _{i=0}^d 4 ( \frac{1}{2} - H_b^{-1}(1 - \mathop {\mathrm {\textsf{MI}}}\limits \!\left( L_i ; Y_i\right) ))^2 \nonumber \\&\qquad + o \bigg ( \prod _{i=0}^d 4 ( \frac{1}{2} - H_b^{-1}(1 - \mathop {\mathrm {\textsf{MI}}}\limits \!\left( L_i ; Y_i\right) ))^2 \bigg ) \\&= \frac{2 \log (e)}{4} \prod _{i=0}^d 4 \frac{\mathop {\mathrm {\textsf{MI}}}\limits \!\left( L_i ; Y_i\right) }{2 \log e} + o\bigg ( \prod _{i=0}^d 4 \frac{\mathop {\mathrm {\textsf{MI}}}\limits \!\left( L_i ; Y_i\right) }{2 \log e} \bigg ) \end{aligned}$$

That it under normalized form

$$\begin{aligned} \mathop {\mathrm {\textsf{MI}}}\limits \!\left( Y ; \textbf{L}\right)&\le \frac{\log (e)}{2} \prod _{i=0}^d \mathop {\mathrm {\textsf{MI}}}\limits \!\left( L_i ; Y_i\right) \frac{2}{\log e} + o\bigg ( \prod _{i=0}^d \mathop {\mathrm {\textsf{MI}}}\limits \!\left( L_i ; Y_i\right) \bigg ) \\&= \eta \prod _{i=0}^d \frac{\mathop {\mathrm {\textsf{MI}}}\limits \!\left( L_i ; Y_i\right) }{\eta } + o\bigg ( \prod _{i=0}^d \mathop {\mathrm {\textsf{MI}}}\limits \!\left( L_i ; Y_i\right) \bigg ). \end{aligned}$$

B Technical Statements and Proofs from Sect.4

Proposition 5 (Optimal Reversed Pinsker)

Let\(f_{\textsf{opt}}\) be the optimal reverse Pinsker inequality, i.e.,

$$\begin{aligned} \begin{array}{l|rcl} f_{\textsf{opt}}: &{} \left[ 0, \frac{1}{M}\right] &{} \longrightarrow &{} \mathbb {R}_+ \\ &{} \varDelta &{} \longmapsto &{} \frac{1}{M} ((1 + M \varDelta ) \log (1 + M \varDelta ) \end{array}\\{ + ( (1-\varDelta )M - L) \log ( (1-\varDelta )M - L))} \end{aligned}$$
(12)

where\(L=\lfloor M (1 - \varDelta ) \rfloor \). For all p.m.f.P we have\( \mathsf {D_{KL}}(P\; \Vert \;U) \le f_{\text {opt}}(\varDelta (P,U))\).

Proof

By applying the entropy which is Schur-concave to Eqn. 51 in [25]. We factor\(-\log M\) in each term of the inequality to obtain Prop. 5.    \(\square \)

Theorem 3 (Formal version of Theorem 2)

Let\(\mathcal {H}\) be the class of function that is lower bounded by\(f_{\text {opt}}\), concave when composed with a square root and increasing. Let\(P = \frac{1}{4} \prod _{i=0}^d C \mathop {\mathrm {\textsf{MI}}}\limits \!\left( Y_i ; L_i\right) \), we have

$$\begin{aligned} \mathop {\mathrm {\textsf{MI}}}\limits \!\left( Y ; \textbf{L}\right) \le \inf _{f \in \mathcal {H}} (f\circ \sqrt{\text { }}) (P). \end{aligned}$$
(13)

Let\(C_{\alpha }=\sup _{\varDelta \in ]0,1-\frac{1}{M}]} f^*(\varDelta ) \varDelta ^{-2\alpha } = \max _{\varDelta = k/M, k \in \{1,\ldots M-1\}} f^*(\varDelta ) \varDelta ^{-2\alpha }\).

We have

$$\begin{aligned} \mathop {\mathrm {\textsf{MI}}}\limits \!\left( Y ; \textbf{L}\right)&\le \min \biggl (\log (1 + M^2(4^{\frac{1}{M}}-1) P ) , (\frac{1}{M} + \sqrt{P}) \log (1+M \sqrt{P}) \biggl ) \end{aligned}$$
(14)
$$\begin{aligned}&\le \inf _{\alpha \in [0,1]} C_{\alpha } \cdot P^{\alpha } \end{aligned}$$
(15)
$$\begin{aligned}&\le \log (M) (1 + \frac{1}{M}) \cdot P^{ \frac{1}{2} }. \end{aligned}$$
(16)

Remark 3

The infinum in Eqn. 13 can be computed with the Legendre-Fenchel transform\(f \mapsto f^*\) (i.e.\(f^*(p) = \sup _x \{ px-f(x) \}\)). Indeed, it is given by\(\varDelta \mapsto - (-f_{\text {opt}}\circ \sqrt{\cdot })^{**}(\varDelta ^2)\) by applying Thm. 10 in [27].

The different inequalities are shown in Fig. 5.\(f_1\) is the best for\(\varDelta \le 1/M\) and else\(f_2\) is the best. Eqn. 16 shows that if we reduce the security exponent to\( \frac{1}{2} \) we can obtain a mild (logarithmic) dependency in the field size.

Fig. 5.
figure 5

Illustration of the inequalities for\(M=16\). Pinsker is the dashed blue line. The classical reverse Pinsker is the orange line. The optimal reverse Pinsker\(f_{\text {opt}}\) is the green curve. The dotted curve is\(f_2\) and the red curve\(f_1\). (Color figure online)

Proof

All derivations of [22] hold for\(f \in \mathcal {H}\) which shows Eqn. 13. Indeed,

$$\begin{aligned} \textrm{KL}(Y|\textbf{L}||U)&\le f_{\text {opt}}(\varDelta )&\,&Prop.~5 \\&\le f(\varDelta )&\,&f_{\text {opt}} \le f \\&\le f( \frac{1}{2} \prod _{i=0}^d 2 \varDelta ((Y_i|L_i);U))&\,&\text {XOR Lemma} \\&= (f \circ \sqrt{\cdot } )(\frac{1}{4} \prod _{i=0}^d 4 \varDelta ((Y_i|L_i);U))^2 \\&\le (f \circ \sqrt{\cdot } )(\frac{1}{4} \prod _{i=0}^d C \textrm{KL}(Y_i|L_i||U))&\,&\text {Pinsker} \end{aligned}$$

Since\((f \circ \sqrt{\cdot } )\) is concave, we apply Jensen inequality and take the expectation to obtain the desired inequality. The expectation of the product is simplified to the product of the expectations by independence of the terms. Let\( f_1 : \varDelta \mapsto \log (1 + M^2(4^{\frac{1}{M}}-1) \varDelta ^2) \approx M C \varDelta ^2\) and\(f_2 : \varDelta \mapsto (\varDelta + \frac{1}{M}) \log (1 + M \varDelta )\). We show that\(f_1\) and\(f_2\) are in\(\mathcal {H}\). For\(f_2\) it is clear since\(f_2\) is\(f^*\) where we removed the negative 1/M periodic term.\(f_1\) is clearly concave in\(\varDelta ^2\) and increasing. To ensure that\(f_1 \ge f_{\text {opt}}\) we consider the case of equality in\(\frac{1}{M}\). This imposes\(\log (1 + \beta _M M^{-2}) = \frac{2}{M}\) where\(\beta _M = M^2(4^{\frac{1}{M}}-1)\). For\(\varDelta \le \frac{1}{M}\),\( M f_{\text {opt}}(\varDelta ) = (1+M\varDelta )\log (1+M\varDelta ) +(1-M\varDelta )\log (1-M\varDelta ) \le \frac{2}{M} \log (1+M^2\varDelta ^2)\) by Jensen in equality. This upper bound of\(f_{\text {opt}}\) is a lower bound of\(f_1\). Since\(\log \) is increasing the inequality holds if and only if\(1+\beta _M \varDelta ^2 \ge (1+M^2\varDelta ^2)^{\frac{2}{M}}\). Equality holds in 0 and 1/M and we show that the derivative of the difference is increasing then decreasing. The derivative is given by\(2\varDelta (\beta _M-2M(1+M^2\varDelta ^2)^{\frac{2}{M}-1})\) and its sign is given by\(\beta _M - 2M(1+M^2\varDelta ^2)^{\frac{2}{M}-1}\). This quantity is positive in 0 and monotonically decreasing hence the result. It remains to prove the inequality for\(\varDelta \ge \frac{1}{M}\). To do so, we show that\(f_1(\varDelta ) \ge \log (1+M\varDelta ) \ge \frac{1+M\varDelta }{M} \log (1+M\varDelta )\). Since\(\log \) is increasing it is enough to have\(1+\beta _M \varDelta ^2 \ge 1 + M \varDelta \) that is\(\varDelta \ge M/\beta _M\) i.e.,\(4^{\frac{1}{M}} - 1 \ge \frac{1}{M}\). This holds since\(e^x-1 \ge x\) by convexity of the exponential. This shows that\(f_1 \in \mathcal {H}\) and Eqn. 14 is proved. Let\(\mathcal {H}_{\text {poly}} = \{ f_{\alpha } : \varDelta \mapsto C_\alpha \varDelta ^{2\alpha } | \alpha \in [0,1]\}\), we show that\(\mathcal {H}_{\text {poly}} \subset \mathcal {H}\). Functions\(\mathcal {H}_{\text {poly}}\) are concave when composed with a square root since\(\alpha \le 1\), increasing since\(\alpha \ge 0\) and lower bounded by\(f_{\text {opt}}\) by definition of\(C_\alpha \). This proves Eqn. 15. To prove Eqn. 16 we observe that\(C_0 = \log (M)\),\(C_{\alpha }\) is continuous and increasing in\(\alpha \). Consider the values of\(\varDelta \) for which the\(\sup \) in the definition of\(C_\alpha \) is reached. Since\(f_{\text {opt}}\) is square-root convex in the intervals\([k/M,(k+1)/M]\) and\(\varDelta \mapsto C_\alpha \varDelta ^{2\alpha }\) is square-root concave we can only have equality in\(\frac{k+1}{M}\). This shows that\(C_\alpha = \max _{\varDelta = k/M, k \in \{1,\ldots M-1\}} f^*(\varDelta ) \varDelta ^{-2\alpha }\). We verify that the maximum is reached in\(1-1/M\) when\(\alpha = \frac{1}{2} \). The ratio of the sequence\(f^*(k/M) (\frac{k}{M})^{-2\alpha }\) is larger than 1 which proves Eqn. 16.    \(\square \)

Rights and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Béguinot, J.et al. (2023). Removing the Field Size Loss from Duc et al.’s Conjectured Bound for Masked Encodings. In: Kavun, E.B., Pehl, M. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2023. Lecture Notes in Computer Science, vol 13979. Springer, Cham. https://doi.org/10.1007/978-3-031-29497-6_5

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp