Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Groups Burning: Analyzing Spreading Processes in Community-Based Networks

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 13973))

  • 545Accesses

Abstract

Graph burning is a deterministic, discrete-time process that can be used to model how influence or contagion spreads in a graph. In the graph burning process, each node starts as dormant, and becomes informed/burned over time; when a node is burned, it remains burned until the end of the process. In each round, one can burn a new node (source of fire) in the network. Once a node is burned in roundt, in round\(t+1\), each of its dormant neighbors becomes burned. The process ends when all nodes are burned; the goal is to minimize the number of rounds. We study a variation of graph burning in order to model spreading processes in community-based networks. With respect to a specific piece of information, a community issatisfied when this information reaches at least a prescribed number of its members. Specifically, we consider the problem of identifying a minimum length sequence of nodes that, according to a graph burning process, allows to satisfy all the communities of the network. We investigate this NP-hard problem from an approximation point of view, showing both a lower bound and a matching upper bound. We also investigate the case when the number of communities is constant and show how to solve the problem with a constant approximation factor. Moreover, we consider the problem of maximizing the number of satisfied groups, given a budgetk on the number of rounds.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Chapter© 2020

Chapter© 2023

Chapter© 2018

Notes

  1. 1.

    For any integera, we denote by [a] the set {1, 2, ..., a}.

References

  1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comp. Sci.411(44–46), 4017–4022 (2010)

    Article MathSciNet MATH  Google Scholar 

  2. Arora, S., Lund, C.: Hardness of approximation. In: Hochbaum, Ed. D. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 399–446 PWS Publishers (1995)

    Google Scholar 

  3. Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approximation for colorful k-center.arXiv:1907.08906v1 (2019)

  4. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim.8(1), 87–96 (2011)

    Article MathSciNet MATH  Google Scholar 

  5. Bonato, A.: A survey of graph burning. Contr. Discret. Math.16, 185–197 (2021)

    MathSciNet MATH  Google Scholar 

  6. Bonato, A., Kamali, S.: Approximation algorithms for graph burning. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 74–92. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-14812-6_6

    Chapter  Google Scholar 

  7. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004).https://doi.org/10.1007/978-3-540-27821-4_7

    Chapter MATH  Google Scholar 

  8. Chen, W., Lakshmanan, L.V.S., Castillo, C.: Information and influence propagation in social networks. In: Synthesis Lectures on Data Management, vol. 5.4 (2013)

    Google Scholar 

  9. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. Theory Comput. Syst.55(1), 61–83 (2014).https://doi.org/10.1007/s00224-013-9499-3

    Article MathSciNet MATH  Google Scholar 

  10. Cicalese, F., Cordasco, G., Gargano, L., Milanic, M., Vaccaro, U.: Latency-bounded target set selection in social networks. Theor. Comp. Sci.535, 1–15 (2014)

    Article MathSciNet MATH  Google Scholar 

  11. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in expanders. In: Proceedings of SODA, pp. 1953–1987 (2015)

    Google Scholar 

  12. Cordasco, G., Gargano, L., Rescigno, A.A.: Influence propagation over large scale social networks. In: Proceedings of ASONAM, pp. 1531–1538 (2015)

    Google Scholar 

  13. Cicalese, F., Cordasco, G., Gargano, L., Milanic, M., Peters, J., Vaccaro, U.: Spread of influence in weighted networks under time and budget constraints. Theor. Comp. Sci.586, 40–58 (2015)

    Article MathSciNet MATH  Google Scholar 

  14. Cordasco, G., Gargano, L., Rescigno, A.A.: On finding small sets that influence large networks. Soc. Netw. Anal. Min.6, 1–20 (2016)

    Article  Google Scholar 

  15. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Evangelism in social networks: algorithms and complexity. Networks71(4), 346–357 (2018)

    Article MathSciNet MATH  Google Scholar 

  16. Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U.: Discovering small target sets in social networks: a fast and effective algorithm. Algorithmica80, 1804–1833 (2018).https://doi.org/10.1007/s00453-017-0390-5

    Article MathSciNet MATH  Google Scholar 

  17. Cordasco, G., Gargano, L., Rescigno, A.A.: Active influence spreading in social networks. Theor. Comp. Sci.764, 15–29 (2019)

    Article MathSciNet MATH  Google Scholar 

  18. Cordasco, G., et al.: Whom to befriend to influence people. Theor. Comp. Sci.810, 26–42 (2020)

    Article MathSciNet MATH  Google Scholar 

  19. Cordasco, G., Gargano, L., Peters, J.G., Rescigno, A.A., Vaccaro, U.: Fast and frugal targeting with incentives. Theor. Comp. Sci.812, 62–79 (2020)

    Article MathSciNet MATH  Google Scholar 

  20. Dinh, T.N., Zhang, H., Nguyen, D.T., Thai, M.T.: Cost-effective viral marketing for time-critical campaigns in large-scale social networks. IEEE Trans. Net.22, 2001–2011 (2014)

    Article  Google Scholar 

  21. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected world. Cambridge University Press, Cambridge (2010)

    Book MATH  Google Scholar 

  22. Gargano, L., Hell, P., Peters, J.G., Vaccaro, U.: Influence diffusion in social networks under time window constraints. Theor. Comp. Sci.584(C), 53–66 (2015)

    Article MathSciNet MATH  Google Scholar 

  23. Jia, X., Sheth, K., Svensson, O.: Fair colorful k-center clustering.arXiv:2007.04059v1 (2020)

  24. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of KDD 2003 (2003)

    Google Scholar 

  25. Lev, B., Soyster, A.L.: Integer programming with bounded variables via canonical separation. J. Oper. Res. Soc.29(5), 477–488 (1978)

    Article MathSciNet MATH  Google Scholar 

  26. Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms Appl.15(5), 683–699 (2011)

    Article MathSciNet MATH  Google Scholar 

  27. Shakarian, P., Eyre, S., Paulo, D.: A scalable heuristic for viral marketing under the tipping model. Soc. Netw. Anal. Min.3(4), 1225–1248 (2013).https://doi.org/10.1007/s13278-013-0135-7

    Article  Google Scholar 

  28. Zhu, J., Ghosh, S., Wu, W.: Group influence maximization problem in social networks. IEEE Trans. Comput. Soc. Syst.6(6), 1156–1164 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, University of Campania “L.Vanvitelli”, Caserta, Italy

    Gennaro Cordasco

  2. Department of Computer Science, University of Salerno, Fisciano, Italy

    Luisa Gargano & Adele A. Rescigno

Authors
  1. Gennaro Cordasco

    You can also search for this author inPubMed Google Scholar

  2. Luisa Gargano

    You can also search for this author inPubMed Google Scholar

  3. Adele A. Rescigno

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toGennaro Cordasco.

Editor information

Editors and Affiliations

  1. National Yang Ming Chiao Tung University, Hsinchu, Taiwan

    Chun-Cheng Lin

  2. National Yang Ming Chiao Tung University, Hsinchu, Taiwan

    Bertrand M. T. Lin

  3. University of Perugia, Perugia, Italy

    Giuseppe Liotta

Rights and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cordasco, G., Gargano, L., Rescigno, A.A. (2023). Groups Burning: Analyzing Spreading Processes in Community-Based Networks. In: Lin, CC., Lin, B.M.T., Liotta, G. (eds) WALCOM: Algorithms and Computation. WALCOM 2023. Lecture Notes in Computer Science, vol 13973. Springer, Cham. https://doi.org/10.1007/978-3-031-27051-2_28

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp