1128Accesses
4Citations
Abstract
Depletion of fossil resources, growing population, and climate change problems have caused a requirement for renewable and sustainable energy resources. Bioethanol is a promising alternative to fossil-based fuels due to its safe, cost-effective, and eco-friendly characteristics. The integration of renewable biomass resources into the bioethanol process supports the green future concept by contributing to sustainability, control of environmental pollution, and reduction of greenhouse gas emissions. Currently, various efforts have been performed to develop commercial bioethanol production plants which aim to obtain high bioethanol yield with the use of different types of feedstocks and microorganisms by performing multistep processes. This chapter provides a comprehensive overview of bioethanol production from the perspectives of product yield, sustainability, and commercialization. In particular, the chapter is divided into four parts including feedstocks, used microorganisms, bioethanol production process, and contribution of this process to the biorefinery concept. An insight into the future prospects together with the economics and viability of the process are also accounted.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 17159
- Price includes VAT (Japan)
- Softcover Book
- JPY 21449
- Price includes VAT (Japan)
- Hardcover Book
- JPY 21449
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
R. Bibi, M. Imran, S. Hussain, A. Ditta, Algal bioethanol production technology: A trend towards sustainable development. Renew. Sustain. Energy Rev.71, 976–985 (2020).https://doi.org/10.1016/j.rser.2016.12.126
F. Offei, M. Mensah, F. Kemausuor, A. Thygesen, A biorefinery approach to bioethanol and bioelectricity co-production from tropical seaweeds. J. Appl. Phycol.31, 3899–3913 (2019)
S. Nanda, R. Rana, P.K. Sarangi, A.K. Dalai, A broad introduction to first-, second-, and third-generation biofuels, inRecent Advancements in Biofuels and Bioenergy Utilization, ed. by P. Sarangi, S. Nanda, P. Mohanty, (Springer, Singapore, 2018), pp. 1–25.https://doi.org/10.1007/978-981-13-1307-3_1
M.S. Chowdhury, K.S. Rahman, V. Selvanathan, N. Nuthammachot, M. Suklueng, A. Mostafaeipour, A. Habib, M. Akhtaruzzaman, N. Amin, K. Techato, Current trends and prospects of tidal energy technology. Environ. Dev. Sustain.23, 8179–8194 (2021).https://doi.org/10.1007/s10668-020-01013-4
H. Zabed, J.N. Sahu, A. Suely, A.N. Boyce, G. Faruq, Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sust. Energ. Rev.71, 475–501 (2017).https://doi.org/10.1016/j.rser.2016.12.076
A. Rahman, O. Farrok, M.M. Haque, Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sust. Energ. Rev.161, 112279 (2022).https://doi.org/10.1016/j.rser.2022.112279
N. Duić, K. Urbaniec, D. Huisingh, Components and structures of the pillars of sustainability. J. Clean. Prod.88, 1–12 (2015).https://doi.org/10.1016/j.jclepro.2014.11.030
R. Kumar, S. Chatterjee, P. Behari, Chemosphere Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere231, 588–606 (2019).https://doi.org/10.1016/j.chemosphere.2019.05.142
M.O.S. Dias, T.L. Junqueira, C. Eduardo, V. Rossell, R. Maciel, A. Bonomi, Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane. Fuel Process. Technol.109, 84–89 (2013).https://doi.org/10.1016/j.fuproc.2012.09.041
M.P. Sudhakar, R. Merlyn, K. Arunkumar, K. Perumal, Characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker’s yeast. Biomass Bioenergy90, 148–154 (2016).https://doi.org/10.1016/j.biombioe.2016.03.031
A. Duque, C. Álvarez, P. Doménech, P. Manzanares, A.D. Moreno, Advanced bioethanol production: From novel raw materials to integrated biorefineries. Processes9, 1–30 (2021).https://doi.org/10.3390/pr9020206
B.V. Ayodele, M.A. Alsaffar, S.I. Mustapa, An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J. Clean. Prod.245, 118857 (2020).https://doi.org/10.1016/j.jclepro.2019.118857
REN21, Ren21–2020 global status report (2020).https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf
A. Bušić, G. Morzak, H. Belskaya, I. Šantek, Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol. Biotechnol.56, 289–311 (2018).https://doi.org/10.17113/ftb.56.03.18.5546
M. Rastogi, S. Shrivastava, Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renew. Sust. Energ. Rev.80, 330–340 (2017).https://doi.org/10.1016/j.rser.2017.05.225
N. Dave, R. Selvaraj, T. Varadavenkatesan, R. Vinayagam, A critical review on production of bioethanol from macroalgal biomass. Algal Res.42, 1–14 (2019).https://doi.org/10.1016/j.algal.2019.101606
S. Kumar, R. Gupta, G. Kumar, D. Sahoo, R. Chander, Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol.135, 150–156 (2013).https://doi.org/10.1016/j.biortech.2012.10.120
J. Lucas, J. Soares, D. Joanol, C. Krause, J. Botelho, J. Alberto, V. Costa, M. Greque, D. Morais, International journal of biological macromolecules microalgae starch: A promising raw material for the bioethanol production. Int. J. Biol. Macromol.165, 2739–2749 (2020).https://doi.org/10.1016/j.ijbiomac.2020.10.159
B. Abdullah, S.A.F. Syed Muhammad, Z. Shokravi, S. Ismail, K.A. Kassim, A.N. Mahmood, M.M.A. Aziz, Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sust. Energ. Rev.107, 37–50 (2019).https://doi.org/10.1016/j.rser.2019.02.018
W.H. Leong, J.W. Lim, M.K. Lam, Y. Uemura, Y.C. Ho, Third generation biofuels: A nutritional perspective in enhancing microbial lipid production. Renew. Sust. Energ. Rev.91, 950–961 (2018).https://doi.org/10.1016/j.rser.2018.04.066
S. Niphadkar, P. Bagade, S. Ahmed, Bioethanol production: Insight into past, present and future perspectives. Biofuels9, 229–238 (2018).https://doi.org/10.1080/17597269.2017.1334338
M. Vohra, J. Manwar, R. Manmode, S. Padgilwar, S. Patil, Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng.2, 573–584 (2014).https://doi.org/10.1016/j.jece.2013.10.013
G. Lamichhane, A. Acharya, D.K. Poudel, B. Aryal, N. Gyawali, P. Niraula, S.R. Phuyal, P. Budhathoki, G. Bk, N. Parajuli, Recent advances in bioethanol production from Lignocellulosic biomass. Int. J. Green Energy18, 731–744 (2021).https://doi.org/10.1080/15435075.2021.1880910
M. Morales, A. Arvesen, F. Cherubini, Integrated process simulation for bioethanol production: Effects of varying lignocellulosic feedstocks on technical performance. Bioresour. Technol.328, 124833 (2021).https://doi.org/10.1016/j.biortech.2021.124833
S. Mohapatra, R.C. Ray, S. Ramachandran,Bioethanol from Biorenewable Feedstocks: Technology, Economics, and Challenges (Elsevier Inc., 2019).https://doi.org/10.1016/b978-0-12-813766-6.00001-1
S.A. Jambo, R. Abdulla, S.H. Mohd Azhar, H. Marbawi, J.A. Gansau, P. Ravindra, A review on third generation bioethanol feedstock. Renew. Sust. Energ. Rev.65, 756–769 (2016).https://doi.org/10.1016/j.rser.2016.07.064
R. Saini, C.S. Osorio-Gonzalez, K. Hegde, S.K. Brar, S. Magdouli, P. Vezina, A. Avalos-Ramirez, Lignocellulosic biomass-based biorefinery: An insight into commercialization and economic standout. Curr. Sustain. Energy Rep.7, 122–136 (2020).https://doi.org/10.1007/s40518-020-00157-1
M. Toor, S.S. Kumar, S.K. Malyan, N.R. Bishnoi, T. Mathimani, K. Rajendran, A. Pugazhendhi, An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere242, 1–12 (2020).https://doi.org/10.1016/j.chemosphere.2019.125080
N.S. Mat Aron, K.S. Khoo, K.W. Chew, P.L. Show, W.H. Chen, T.H.P. Nguyen, Sustainability of the four generations of biofuels – A review. Int. J. Energy Res.44, 9266–9282 (2020).https://doi.org/10.1002/er.5557
H.A. Alalwan, A.H. Alminshid, H.A.S. Aljaafari, Promising evolution of biofuel generations. Subject review. Renew. Energy Focus.28, 127–139 (2019).https://doi.org/10.1016/j.ref.2018.12.006
T.S. Angili, K. Grzesik, M. Kaltschmitt, Life cycle assessment of bioethanol production: A review of feedstock, technology and methodology. Energies14, 1–18 (2021)
K. Rajendran, E. Drielak, V. Sudarshan Varma, S. Muthusamy, G. Kumar, Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production – A review. Biomass Convers. Biorefin.8, 471–483 (2018).https://doi.org/10.1007/s13399-017-0269-3
J.A. Ferreira, P. Brancoli, S. Agnihotri, K. Bolton, M.J. Taherzadeh, A review of integration strategies of lignocelluloses and other wastes in 1st generation bioethanol processes. Process Biochem.75, 173–186 (2018).https://doi.org/10.1016/j.procbio.2018.09.006
P.R. Lennartsson, P. Erlandsson, M.J. Taherzadeh, Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour. Technol.165, 3–8 (2014).https://doi.org/10.1016/j.biortech.2014.01.127
R.B. Nair, M. Kalif, J.A. Ferreira, M.J. Taherzadeh, P.R. Lennartsson, Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes. Bioresour. Technol.245, 145–151 (2017).https://doi.org/10.1016/j.biortech.2017.08.125
I.D.O. Pereira, Â.A. Dos Santos, D.L. Gonçalves, M. Purificação, N.C. Guimarães, R. Tramontina, N. Coutouné, E. Zanella, A. Matsushika, B.U. Stambuk, J.L. Ienczak, Comparison of Spathaspora passalidarum and recombinant Saccharomyces cerevisiae for integration of first-and second-generation ethanol production. FEMS Yeast Res.21, 1–14 (2021).https://doi.org/10.1093/femsyr/foab048
S. Macrelli, M. Galbe, O. Wallberg, Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock. Biotechnol. Biofuels7, 1–16 (2014).https://doi.org/10.1186/1754-6834-7-26
V. Anguselvi, R.E. Masto, A. Mukherjee, P.K. Singh, CO2 capture for industries by Algae, inAlgae, ed. by Y.K. Wong, (IntechOpen, 2019), pp. 1–10.https://doi.org/10.5772/intechopen.81800
H. Chowdhury, B. Loganathan, I. Mustary, F. Alam, S.M.A. Mobin, Algae for biofuels: The third generation of feedstock, inSecond Third Gener. Feed., ed. by A. Basile, F. Dalena, (Elsevier Inc., 2019), pp. 323–344.https://doi.org/10.1016/B978-0-12-815162-4.00012-4
K. Li, S. Liu, X. Liu, An overview of algae bioethanol production. Int. J. Energy Res.38, 965–977 (2014).https://doi.org/10.1002/er.3164
M.M. Ismail, G.A. Ismail, M.M. El-Sheekh, Potential assessment of some micro- and macroalgal species for bioethanol and biodiesel production, inEnergy Sources, Part A Recovery, Utilization, and Environmental Effects, (Taylor & Francis, 2020), pp. 1–17.https://doi.org/10.1080/15567036.2020.1758853
D.F. Rocher, R.A. Cripwell, M. Viljoen-Bloom, Engineered yeast for enzymatic hydrolysis of laminarin from brown macroalgae. Algal Res.54, 1–10 (2021).https://doi.org/10.1016/j.algal.2021.102233
K.T.X. Tong, I.S. Tan, H.C.Y. Foo, A.C.Y. Tiong, M.K. Lam, K.T. Lee, Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract. Bioresour. Technol.342, 1–12 (2021).https://doi.org/10.1016/j.biortech.2021.125880
T.V. Ramachandra, D. Hebbale, Bioethanol from macroalgae: Prospects and challenges. Renew. Sust. Energ. Rev.117, 1–18 (2020).https://doi.org/10.1016/j.rser.2019.109479
L. Malafronte, S. Yilmaz-Turan, A. Krona, M. Martinez-Sanz, F. Vilaplana, P. Lopez-Sanchez, Macroalgae suspensions prepared by physical treatments: Effect of polysaccharide composition and microstructure on the rheological properties. Food Hydrocoll.120, 1–11 (2021).https://doi.org/10.1016/j.foodhyd.2021.106989
R.S. Dharshini, A.A. Fathima, S.R. Dharani, M. Ramya, Utilization of alginate from brown macroalgae for ethanol production by clostridium phytofermentans. Appl. Biochem. Microbiol.56, 173–178 (2020).https://doi.org/10.1134/S0003683820020040
K.K. Kadimpati, S. Thadikamala, K. Devarapalli, L. Banoth, K.B. Uppuluri, Characterization and hydrolysis optimization of Sargassum cinereum for the fermentative production of 3G bioethanol. Biomass Convers. Biorefin., 1 (2021).https://doi.org/10.1007/s13399-020-01270-3
A. Andreeva, E. Budenkova, O. Babich, S. Sukhikh, V. Dolganyuk, P. Michaud, S. Ivanova, Influence of carbohydrate additives on the growth rate of microalgae biomass with an increased carbohydrate content. Mar. Drugs19, 1–18 (2021).https://doi.org/10.3390/md19070381
B.C.B. de Freitas, E.H. Brächer, E.G. de Morais, D.I.P. Atala, M.G. de Morais, J.A.V. Costa, Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content. Environ. Technol.40, 1062–1070 (2019).https://doi.org/10.1080/09593330.2017.1417491
Z.U. Rehman, A.K. Anal, Enhanced lipid and starch productivity of microalga (Chlorococcum sp. TISTR 8583) with nitrogen limitation following effective pretreatments for biofuel production. Biotechnol. Rep.20, 1–8 (2018).https://doi.org/10.1016/j.btre.2018.e00298
J.D. Moha-León, I.A. Pérez-Legaspi, L.A. Ortega-Clemente, I. Rubio-Franchini, E. Ríos-Leal, Improving the lipid content of Nannochloropsis oculata by a mutation-selection program using UV radiation and quizalofop. J. Appl. Phycol.31, 191–199 (2019).https://doi.org/10.1007/s10811-018-1568-1
H. Singh, J.L. Varanasi, S. Banerjee, D. Das, Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock. Energy188, 1–14 (2019).https://doi.org/10.1016/j.energy.2019.116039
N. Haris, H. Manan, M. Jusoh, H. Khatoon, T. Katayama, N.A. Kasan, Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquac. Rep.22, 1–15 (2022).https://doi.org/10.1016/j.aqrep.2021.100925
S. Kawai, K. Murata, Biofuel production based on carbohydrates from both brown and red macroalgae: Recent developments in key biotechnologies. Int. J. Mol. Sci.17, 1–17 (2016).https://doi.org/10.3390/ijms17020145
C. Yarkent, B.A. Guler, C. Gurlek, Y. Sahin, A. Kose, S.S. Oncel, E. Imamoglu, Algal alginate in biotechnology: Biosynthesis and applications, inProperties and Applications of Alginates, ed. by I. Deniz, E. Imamoglu, T. Keskin-Gundogdu, (IntechOpen, 2021), pp. 1–26.https://doi.org/10.5772/intechopen.101407
I.S. Tan, M.K. Lam, H.C.Y. Foo, S. Lim, K.T. Lee, Advances of macroalgae biomass for the third generation of bioethanol production. Chin. J. Chem. Eng.28, 502–517 (2020).https://doi.org/10.1016/j.cjche.2019.05.012
C.E. de Farias Silva, A. Bertucco, Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochem.51, 1833–1842 (2016).https://doi.org/10.1016/j.procbio.2016.02.016
G. Gao, J.G. Burgess, M. Wu, S. Wang, K. Gao, Using macroalgae as biofuel: Current opportunities and challenges. Bot. Mar.63, 355–370 (2020).https://doi.org/10.1515/bot-2019-0065
G.E. Lakatos, K. Ranglová, J.C. Manoel, T. Grivalský, J. Kopecký, J. Masojídek, Bioethanol production from microalgae polysaccharides. Folia Microbiol. (Praha)64, 627–644 (2019).https://doi.org/10.1007/s12223-019-00732-0
V. Godbole, M.K. Pal, P. Gautam, A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. Algal Res.58, 1–11 (2021).https://doi.org/10.1016/j.algal.2021.102436
R. Rengel, R.T. Smith, R.P. Haslam, O. Sayanova, M. Vila, R. León, Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. Algal Res.31, 183–193 (2018).https://doi.org/10.1016/j.algal.2018.02.009
T.H. Nassir, S.T.G. Al-Sahlany, Bioethanol production from agricultural wastes by Zymomonas mobilis and used in vinegar production. J. Microbiol. Biotechnol. Food Sci.11, 1–7 (2021).https://doi.org/10.15414/JMBFS.3709
S. Maity, N. Mallick, Trends and advances in sustainable bioethanol production by marine microalgae: A critical review. J. Clean. Prod.345, 1–19 (2022).https://doi.org/10.1016/j.jclepro.2022.131153
K.A. Selim, D.E. El-Ghwas, S.M. Easa, M.I. Abdelwahab Hassan, Bioethanol a microbial biofuel metabolite; new insights of yeasts metabolic engineering. Fermentation4, 1–27 (2018).https://doi.org/10.3390/fermentation4010016
A. Ajit, A.Z. Sulaiman, Y. Chisti, Production of bioethanol by Zymomonas mobilis in high-gravity extractive fermentations. Food Bioprod. Process.102, 123–135 (2016).https://doi.org/10.1016/j.fbp.2016.12.006
R. Łukajtis, K. Kucharska, I. Hołowacz, P. Rybarczyk, K. Wychodnik, E. Słupek, P. Nowak, M. Kami, Comparison and optimization of saccharification conditions of alkaline pre-treated triticale straw for acid and enzymatic hydrolysis followed by ethanol fermentation. Energies11, 639 (2018).https://doi.org/10.3390/en11030639
N. Ahmed, B.R. Dhar, B.K. Pramanik, H. Forehead, W.E. Price, F.I. Hai, A cookbook for bioethanol from macroalgae: Review of selecting and combining processes to enhance bioethanol production. Curr. Pollut. Rep.7, 476–493 (2021).https://doi.org/10.1007/s40726-021-00202-7
R. Harun, B. Liu, M.K. Danquah, Analysis of process configurations for bioethanol production from microalgal biomass, inProgress in Biomass and Bioenergy Production, ed. by S. Shaukat, (IntechOpen, 2011), pp. 395–408.https://doi.org/10.5772/17468
D. Greetham, A. Zaky, O. Makanjuola, C. Du, A brief review on bioethanol production using marine biomass, marine microorganism and seawater. Curr. Opin. Green Sustain. Chem.14, 53–59 (2018)
I. Edeh, Bioethanol production: An overview, inBioethanol Technologies, ed. by F. Inambao, (IntechOpen, 2020).https://doi.org/10.5772/intechopen.94895
N. Sarkar, S.K. Ghosh, S. Bannerjee, K. Aikat, Bioethanol production from agricultural wastes: An overview. Renew. Energy37, 19–27 (2012).https://doi.org/10.1016/j.renene.2011.06.045
T.J. Tse, D.J. Wiens, M.J.T. Reaney, Production of bioethanol – A review of factors affecting ethanol yield. Fermentation7, 1–18 (2021)
A. Zoghlami, G. Paës, Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Front. Chem.7, 1–14 (2019).https://doi.org/10.3389/fchem.2019.00874
G. Brodeur, E. Yau, K. Badal, J. Collier, K.B. Ramachandran, S. Ramakrishnan, Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzym. Res.2011, 1–18 (2011).https://doi.org/10.4061/2011/787532
D.P. Maurya, A. Singla, S. Negi, An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech.5, 597–609 (2015).https://doi.org/10.1007/s13205-015-0279-4
M. Neves, T. Kimura, N. Shimizu, M. Nakajima, State of the art and future trends of bioethanol production. Dyn. Biochem. Process. Biotechnol. Mol. Biol.1, 1–14 (2007)
R. Muktham, S.K. Bhargava, S. Bankupalli, A.S. Ball, A review on 1st and 2nd generation bioethanol production-recent progress. J. Sustain. Bioenergy Syst.6, 72–92 (2016)
I. Egüés, C. Sanchez, I. Mondragon, J. Labidi, Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresour. Technol.103, 239–248 (2012).https://doi.org/10.1016/j.biortech.2011.09.139
E.C. Bensah, M. Mensah, Chemical pretreatment methods for the production of cellulosic ethanol: Technologies and innovations. Int. J. Chem. Eng.2013, 1–21 (2013).https://doi.org/10.1155/2013/719607
J.R. Melendez, B. Mátyás, S. Hena, D.A. Lowy, A. El Salous, Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses. Renew. Sust. Energ. Rev.160, 1–16 (2022).https://doi.org/10.1016/j.rser.2022.112260
D. Özçimen, B. İnan, An overview of bioethanol production from Algae, inBiofuels – Status Perspective, ed. by K. Biernat, (IntechOpen, 2015), pp. 141–162.https://doi.org/10.5772/59305
B. Joshi, M. Raj, B. Dinita, S. Jarina, J. Rajani, Lignocellulosic ethanol production: Current practices and recent developments. Biotechnol. Mol. Biol. Rev.6, 172–182 (2011)
H. Zabed, G. Faruq, J.N. Sahu, M.S. Azirun, R. Hashim, A. Nasrulhaq Boyce, Bioethanol production from fermentable sugar juice. Sci. World J.2014, 1–11 (2014).https://doi.org/10.1155/2014/957102
S.H. Mohd Azhar, R. Abdulla, S.A. Jambo, H. Marbawi, J.A. Gansau, A.A. Mohd Faik, K.F. Rodrigues, Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep.10, 52–61 (2017).https://doi.org/10.1016/j.bbrep.2017.03.003
S. Brethauer, C.E. Wyman, Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour. Technol.101, 4862–4874 (2010).https://doi.org/10.1016/j.biortech.2009.11.009
C.G. Liu, Y. Xiao, X.X. Xia, X.Q. Zhao, L. Peng, P. Srinophakun, F.W. Bai, Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol. Adv.37, 491–504 (2019).https://doi.org/10.1016/j.biotechadv.2019.03.002
K. Sakimoto, M. Kanna, Y. Matsumura, Kinetic model of cellulose degradation using simultaneous saccharification and fermentation. Biomass Bioenergy99, 116–121 (2017).https://doi.org/10.1016/j.biombioe.2017.02.016
B.Y. Yang, M.H. Cheng, C.H. Ko, Y.N. Wang, W.H. Chen, W.S. Hwang, Y.P. Yang, H.T. Chen, F.C. Chang, Potential bioethanol production from Taiwanese chenopods (Chenopodium formosanum). Energy76, 59–65 (2014).https://doi.org/10.1016/j.energy.2014.03.046
W.H. Van Zyl, L.R. Lynd, R. Den Haan, J.E. McBride, Consolidated bioprocessing for bioethanol production using saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol.108, 205–235 (2007).https://doi.org/10.1007/10_2007_061
L. Laopaiboon, P. Thanonkeo, P. Jaisil, P. Laopaiboon, Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J. Microbiol. Biotechnol.23, 1497–1501 (2007).https://doi.org/10.1007/s11274-007-9383-x
R. Liu, F. Shen, Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresour. Technol.99, 847–854 (2008).https://doi.org/10.1016/j.biortech.2007.01.009
M.Ü. Ünal, G. Chowdhury, A. Şener, Effect of temperature and nitrogen supplementation on bioethanol production from waste bread, watermelon and muskmelon by Saccharomyces cerevisiae. Biofuels13, 395–399 (2022).https://doi.org/10.1080/17597269.2020.1724440
P. Moodley, E.B. Gueguim Kana, Bioethanol production from sugarcane leaf waste: Effect of various optimized pretreatments and fermentation conditions on process kinetics. Biotechnol. Rep.22, 1–8 (2019).https://doi.org/10.1016/j.btre.2019.e00329
M. Linde, E.L. Jakobsson, M. Galbe, G. Zacchi, Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy32, 326–332 (2008).https://doi.org/10.1016/j.biombioe.2007.09.013
T.I. Georgieva, M.J. Mikkelsen, B.K. Ahring, Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl. Biochem. Biotechnol.145, 99–110 (2008).https://doi.org/10.1007/s12010-007-8014-1
N.W. Burman, C.M. Sheridan, K.G. Harding, Lignocellulosic bioethanol production from grasses pre-treated with acid mine drainage: Modeling and comparison of SHF and SSF. Bioresour. Technol. Rep.7, 1–8 (2019).https://doi.org/10.1016/j.biteb.2019.100299
B. Erdei, D. Hancz, M. Galbe, G. Zacchi, SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production. Biotechnol. Biofuels6, 1–14 (2013).https://doi.org/10.1186/1754-6834-6-169
B. Erdei, B. Franká, M. Galbe, G. Zacchi, Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnol. Biofuels5, 1–13 (2012).https://doi.org/10.1186/1754-6834-5-12
M.A. Sulfahri, S.B. Sumitro, M. Saptasari, Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis. Biofuels7, 621–626 (2016).https://doi.org/10.1080/17597269.2016.1168028
S. Lee, Y. Oh, D. Kim, D. Kwon, C. Lee, J. Lee, Converting carbohydrates extracted from marine algae into ethanol using various ethanolic escherichia coli strains. Appl. Biochem. Biotechnol.164, 878–888 (2011).https://doi.org/10.1007/s12010-011-9181-7
J.M.M. Adams, T.A. Toop, I.S. Donnison, J.A. Gallagher, Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour. Technol.102, 9976–9984 (2011).https://doi.org/10.1016/j.biortech.2011.08.032
S.H. Ho, S.W. Huang, C.Y. Chen, T. Hasunuma, A. Kondo, J.S. Chang, Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour. Technol.135, 191–198 (2013).https://doi.org/10.1016/j.biortech.2012.10.015
J.H. Park, J.Y. Hong, H.C. Jang, S.G. Oh, S.H. Kim, J.J. Yoon, Y.J. Kim, Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol.108, 83–88 (2012).https://doi.org/10.1016/j.biortech.2011.12.065
O.K. Lee, A.L. Kim, D.H. Seong, C.G. Lee, Y.T. Jung, J.W. Lee, E.Y. Lee, Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol.132, 197–201 (2013).https://doi.org/10.1016/j.biortech.2013.01.007
J.K. Kim, B.H. Um, T.H. Kim, Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Korean J. Chem. Eng.29, 209–214 (2012).https://doi.org/10.1007/s11814-011-0169-3
A. Khalid, M. Aslam, M.A. Qyyum, A. Faisal, A.L. Khan, F. Ahmed, M. Lee, J. Kim, N. Jang, I.S. Chang, A.A. Bazmi, M. Yasin, Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renew. Sust. Energ. Rev.105, 427–443 (2019).https://doi.org/10.1016/j.rser.2019.02.002
S. Skullong, C. Thianpong, N. Jayranaiwachira, P. Promvonge, Experimental and numerical heat transfer investigation in turbulent square-duct flow through oblique horseshoe baffles. Chem. Eng. Process. Process Intensif.99, 58–71 (2016).https://doi.org/10.1016/j.cep.2015.11.008
R. Parajuli, T. Dalgaard, U. Jørgensen, A. Peter, S. Adamsen, M. Trydeman, M. Birkved, M. Gylling, J. Kofod, Biorefining in the prevailing energy and materials crisis: A review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew. Sust. Energ. Rev.43, 244–263 (2015).https://doi.org/10.1016/j.rser.2014.11.041
J.H. Clark, F.E.I. Deswarte, The biorefinery concept – An integrated approach, inIntroduction to Chemicals from Biomass, ed. by J.H. Clark, F. Deswarte, (Wiley, 2008), pp. 1–20
V.G. Zuin, L.Z. Ramin, Green and sustainable separation of natural products from agro – Industrial waste: Challenges, potentialities, and perspectives on emerging approaches. Top. Curr. Chem.376, 1–54 (2018).https://doi.org/10.1007/s41061-017-0182-z
S. Takkellapati, T. Li, M.A. Gonzalez, An overview of biorefinery derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Techn. Environ. Policy20, 1–30 (2018).https://doi.org/10.1007/s10098-018-1568-5.An
E. Paone, T. Tabanelli, F. Mauriello, ScienceDirect the rise of lignin biorefinery. Curr. Opin. Green Sustain. Chem.24, 1–6 (2020).https://doi.org/10.1016/j.cogsc.2019.11.004
E. De Jong, G. Jungmeier, Biorenery concepts in comparison to petrochemical re neries, inIndustrial Biorefineries and White Biotechnology, ed. by A. Pandey, R. Höfer, M. Taherzadeh, K.M. Nampoothiri, C. Larroche, (Elsevier, 2015), pp. 3–33.https://doi.org/10.1016/B978-0-444-63453-5.00001-X
Z. Usmani, M. Sharma, A.K. Awasthi, T. Lukk, M.G. Tuohy, L. Gong, P. Nguyen-tri, A.D. Goddard, R.M. Bill, S.C. Nayak, V.K. Gupta, Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization. Renew. Sust. Energ. Rev.148, 1–18 (2021).https://doi.org/10.1016/j.rser.2021.111258
J.F.S.C. Filho, P.N. Romano, J.M.A.R. de Almeida, E.F. Sousa-aguiar, Catalytic routes: From bioethanol production model towards the integrated. Curr. Opin. Green Sustain. Chem.20, 33–38 (2019).https://doi.org/10.1016/j.cogsc.2019.09.002
T. Suganya, M. Varman, H.H. Masjuki, S. Renganathan, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sust. Energ. Rev.55, 909–941 (2016).https://doi.org/10.1016/j.rser.2015.11.026
S. Wang, Y. Mukhambet, S. Esakkimuthu, A.E. Abomohra, Integrated microalgal biorefinery – Routes, energy, economic and environmental perspectives. J. Clean. Prod.348, 1–12 (2022).https://doi.org/10.1016/j.jclepro.2022.131245
K.W. Chew, J.Y. Yap, P.L. Show, N.H. Suan, J.C. Juan, T.C. Ling, D.J. Lee, J.S. Chang, Microalgae biorefinery: High value products perspectives. Bioresour. Technol.229, 53–62 (2017).https://doi.org/10.1016/j.biortech.2017.01.006
Á.-D. González-Delgado, V. Kafarov, Microalgae based biorefinery: Issues to consider, Ciencia. Tecnol. Futur.4, 5–22 (2011)
K. Tian, X. Tong, I. Shi, T. Henry, C. Yew, F. Man, K. Lam, S. Lim, K.T. Lee, Advancement of biorefinery – Derived platform chemicals from macroalgae: A perspective for bioethanol and lactic acid. Biomass Convers. Biorefin., 1–37 (2022).https://doi.org/10.1007/s13399-022-02561-7
T. Casalini, F. Rossi, A. Castrovinci, G. Perale, A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol.7, 1–16 (2019).https://doi.org/10.3389/fbioe.2019.00259
S. Mutturi, G. Palmqvist, G. Lidén, Developments in bioethanol fuel-focused biorefineries, inAdvances in Biorefineries, ed. by K. Waldron, (Woodhead Publishing, 2014), pp. 259–302.https://doi.org/10.1533/9780857097385.1.259
V. Balan, Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol.2014, 1–31 (2014).https://doi.org/10.1155/2014/463074
R. Ahorsu, F. Medina, M. Constantí, Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review. Energies11, 1–19 (2018).https://doi.org/10.3390/en11123366
W.D. Prasetyo, Z.A. Putra, M.R. Bilad, T.M.I. Mahlia, Y. Wibisono, N.A.H. Nordin, M.D.H. Wirzal, Insight into the sustainable integration of bio- and petroleum refineries for the production of fuels and chemicals. Polymers (Basel)12, 1–24 (2020)
A. Abdulvahitoğlu, Alternatif Yakıt Olarak Lignoselülozik Etanol Üretimi: İplikhane Pamuk Telefleri Üzerine Bir Çalışma. Çukurova Üniversitesi Mühendislik Mimar. Fakültesi Derg34, 35–44 (2019)
K. Wang, Y.M. Wei, X. Zhang, A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs? Energy Policy46, 574–584 (2012).https://doi.org/10.1016/j.enpol.2012.04.038
M. Brandão, E. Azzi, R.M.L. Novaes, A. Cowie, The modelling approach determines the carbon footprint of biofuels: The role of LCA in informing decision makers in government and industry. Clean. Environ. Syst.2, 1–8 (2021).https://doi.org/10.1016/j.cesys.2021.100027
W.D. Huang, Y.H.P. Zhang, Energy efficiency analysis: Biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems. PLoS One6, 1–10 (2011).https://doi.org/10.1371/journal.pone.0022113
V.S. Sikarwar, M. Zhao, P.S. Fennell, N. Shah, E.J. Anthony, Progress in biofuel production from gasification. Prog. Energy Combust. Sci.61, 189–248 (2017).https://doi.org/10.1016/j.pecs.2017.04.001
H.T. Tan, K.R. Corbin, G.B. Fincher, Emerging technologies for the production of renewable liquid transport fuels from biomass sources enriched in plant cell walls. Front. Plant Sci.7, 1–18 (2016).https://doi.org/10.3389/fpls.2016.01854
Author information
Authors and Affiliations
Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Bahar Aslanbay Guler, Ceren Gurlek, Yaprak Sahin, Suphi S. Oncel & Esra Imamoglu
- Bahar Aslanbay Guler
Search author on:PubMed Google Scholar
- Ceren Gurlek
Search author on:PubMed Google Scholar
- Yaprak Sahin
Search author on:PubMed Google Scholar
- Suphi S. Oncel
Search author on:PubMed Google Scholar
- Esra Imamoglu
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toEsra Imamoglu.
Editor information
Editors and Affiliations
Department of Bioengineering, Ege University, Bornova, Izmir, Türkiye
Suphi S. Oncel
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Aslanbay Guler, B., Gurlek, C., Sahin, Y., Oncel, S.S., Imamoglu, E. (2023). Renewable Bioethanol for a Sustainable Green Future. In: Oncel, S.S. (eds) A Sustainable Green Future. Springer, Cham. https://doi.org/10.1007/978-3-031-24942-6_21
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-031-24941-9
Online ISBN:978-3-031-24942-6
eBook Packages:Earth and Environmental ScienceEarth and Environmental Science (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
Publish with us
Profiles
- Ceren GurlekView author profile
