Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Renewable Bioethanol for a Sustainable Green Future

  • Chapter
  • First Online:

Abstract

Depletion of fossil resources, growing population, and climate change problems have caused a requirement for renewable and sustainable energy resources. Bioethanol is a promising alternative to fossil-based fuels due to its safe, cost-effective, and eco-friendly characteristics. The integration of renewable biomass resources into the bioethanol process supports the green future concept by contributing to sustainability, control of environmental pollution, and reduction of greenhouse gas emissions. Currently, various efforts have been performed to develop commercial bioethanol production plants which aim to obtain high bioethanol yield with the use of different types of feedstocks and microorganisms by performing multistep processes. This chapter provides a comprehensive overview of bioethanol production from the perspectives of product yield, sustainability, and commercialization. In particular, the chapter is divided into four parts including feedstocks, used microorganisms, bioethanol production process, and contribution of this process to the biorefinery concept. An insight into the future prospects together with the economics and viability of the process are also accounted.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. R. Bibi, M. Imran, S. Hussain, A. Ditta, Algal bioethanol production technology: A trend towards sustainable development. Renew. Sustain. Energy Rev.71, 976–985 (2020).https://doi.org/10.1016/j.rser.2016.12.126

    Article CAS  Google Scholar 

  2. F. Offei, M. Mensah, F. Kemausuor, A. Thygesen, A biorefinery approach to bioethanol and bioelectricity co-production from tropical seaweeds. J. Appl. Phycol.31, 3899–3913 (2019)

    Article CAS  Google Scholar 

  3. S. Nanda, R. Rana, P.K. Sarangi, A.K. Dalai, A broad introduction to first-, second-, and third-generation biofuels, inRecent Advancements in Biofuels and Bioenergy Utilization, ed. by P. Sarangi, S. Nanda, P. Mohanty, (Springer, Singapore, 2018), pp. 1–25.https://doi.org/10.1007/978-981-13-1307-3_1

    Chapter  Google Scholar 

  4. M.S. Chowdhury, K.S. Rahman, V. Selvanathan, N. Nuthammachot, M. Suklueng, A. Mostafaeipour, A. Habib, M. Akhtaruzzaman, N. Amin, K. Techato, Current trends and prospects of tidal energy technology. Environ. Dev. Sustain.23, 8179–8194 (2021).https://doi.org/10.1007/s10668-020-01013-4

    Article CAS  Google Scholar 

  5. H. Zabed, J.N. Sahu, A. Suely, A.N. Boyce, G. Faruq, Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sust. Energ. Rev.71, 475–501 (2017).https://doi.org/10.1016/j.rser.2016.12.076

    Article CAS  Google Scholar 

  6. A. Rahman, O. Farrok, M.M. Haque, Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sust. Energ. Rev.161, 112279 (2022).https://doi.org/10.1016/j.rser.2022.112279

    Article  Google Scholar 

  7. N. Duić, K. Urbaniec, D. Huisingh, Components and structures of the pillars of sustainability. J. Clean. Prod.88, 1–12 (2015).https://doi.org/10.1016/j.jclepro.2014.11.030

    Article  Google Scholar 

  8. R. Kumar, S. Chatterjee, P. Behari, Chemosphere Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere231, 588–606 (2019).https://doi.org/10.1016/j.chemosphere.2019.05.142

    Article CAS  Google Scholar 

  9. M.O.S. Dias, T.L. Junqueira, C. Eduardo, V. Rossell, R. Maciel, A. Bonomi, Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane. Fuel Process. Technol.109, 84–89 (2013).https://doi.org/10.1016/j.fuproc.2012.09.041

    Article CAS  Google Scholar 

  10. M.P. Sudhakar, R. Merlyn, K. Arunkumar, K. Perumal, Characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker’s yeast. Biomass Bioenergy90, 148–154 (2016).https://doi.org/10.1016/j.biombioe.2016.03.031

    Article CAS  Google Scholar 

  11. A. Duque, C. Álvarez, P. Doménech, P. Manzanares, A.D. Moreno, Advanced bioethanol production: From novel raw materials to integrated biorefineries. Processes9, 1–30 (2021).https://doi.org/10.3390/pr9020206

    Article CAS  Google Scholar 

  12. B.V. Ayodele, M.A. Alsaffar, S.I. Mustapa, An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. J. Clean. Prod.245, 118857 (2020).https://doi.org/10.1016/j.jclepro.2019.118857

    Article  Google Scholar 

  13. REN21, Ren21–2020 global status report (2020).https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf

  14. A. Bušić, G. Morzak, H. Belskaya, I. Šantek, Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol. Biotechnol.56, 289–311 (2018).https://doi.org/10.17113/ftb.56.03.18.5546

    Article CAS  Google Scholar 

  15. M. Rastogi, S. Shrivastava, Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renew. Sust. Energ. Rev.80, 330–340 (2017).https://doi.org/10.1016/j.rser.2017.05.225

    Article  Google Scholar 

  16. N. Dave, R. Selvaraj, T. Varadavenkatesan, R. Vinayagam, A critical review on production of bioethanol from macroalgal biomass. Algal Res.42, 1–14 (2019).https://doi.org/10.1016/j.algal.2019.101606

    Article  Google Scholar 

  17. S. Kumar, R. Gupta, G. Kumar, D. Sahoo, R. Chander, Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol.135, 150–156 (2013).https://doi.org/10.1016/j.biortech.2012.10.120

    Article CAS  Google Scholar 

  18. J. Lucas, J. Soares, D. Joanol, C. Krause, J. Botelho, J. Alberto, V. Costa, M. Greque, D. Morais, International journal of biological macromolecules microalgae starch: A promising raw material for the bioethanol production. Int. J. Biol. Macromol.165, 2739–2749 (2020).https://doi.org/10.1016/j.ijbiomac.2020.10.159

    Article CAS  Google Scholar 

  19. B. Abdullah, S.A.F. Syed Muhammad, Z. Shokravi, S. Ismail, K.A. Kassim, A.N. Mahmood, M.M.A. Aziz, Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sust. Energ. Rev.107, 37–50 (2019).https://doi.org/10.1016/j.rser.2019.02.018

    Article  Google Scholar 

  20. W.H. Leong, J.W. Lim, M.K. Lam, Y. Uemura, Y.C. Ho, Third generation biofuels: A nutritional perspective in enhancing microbial lipid production. Renew. Sust. Energ. Rev.91, 950–961 (2018).https://doi.org/10.1016/j.rser.2018.04.066

    Article CAS  Google Scholar 

  21. S. Niphadkar, P. Bagade, S. Ahmed, Bioethanol production: Insight into past, present and future perspectives. Biofuels9, 229–238 (2018).https://doi.org/10.1080/17597269.2017.1334338

    Article CAS  Google Scholar 

  22. M. Vohra, J. Manwar, R. Manmode, S. Padgilwar, S. Patil, Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng.2, 573–584 (2014).https://doi.org/10.1016/j.jece.2013.10.013

    Article CAS  Google Scholar 

  23. G. Lamichhane, A. Acharya, D.K. Poudel, B. Aryal, N. Gyawali, P. Niraula, S.R. Phuyal, P. Budhathoki, G. Bk, N. Parajuli, Recent advances in bioethanol production from Lignocellulosic biomass. Int. J. Green Energy18, 731–744 (2021).https://doi.org/10.1080/15435075.2021.1880910

    Article CAS  Google Scholar 

  24. M. Morales, A. Arvesen, F. Cherubini, Integrated process simulation for bioethanol production: Effects of varying lignocellulosic feedstocks on technical performance. Bioresour. Technol.328, 124833 (2021).https://doi.org/10.1016/j.biortech.2021.124833

    Article CAS  Google Scholar 

  25. S. Mohapatra, R.C. Ray, S. Ramachandran,Bioethanol from Biorenewable Feedstocks: Technology, Economics, and Challenges (Elsevier Inc., 2019).https://doi.org/10.1016/b978-0-12-813766-6.00001-1

    Book  Google Scholar 

  26. S.A. Jambo, R. Abdulla, S.H. Mohd Azhar, H. Marbawi, J.A. Gansau, P. Ravindra, A review on third generation bioethanol feedstock. Renew. Sust. Energ. Rev.65, 756–769 (2016).https://doi.org/10.1016/j.rser.2016.07.064

    Article CAS  Google Scholar 

  27. R. Saini, C.S. Osorio-Gonzalez, K. Hegde, S.K. Brar, S. Magdouli, P. Vezina, A. Avalos-Ramirez, Lignocellulosic biomass-based biorefinery: An insight into commercialization and economic standout. Curr. Sustain. Energy Rep.7, 122–136 (2020).https://doi.org/10.1007/s40518-020-00157-1

    Article CAS  Google Scholar 

  28. M. Toor, S.S. Kumar, S.K. Malyan, N.R. Bishnoi, T. Mathimani, K. Rajendran, A. Pugazhendhi, An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere242, 1–12 (2020).https://doi.org/10.1016/j.chemosphere.2019.125080

    Article CAS  Google Scholar 

  29. N.S. Mat Aron, K.S. Khoo, K.W. Chew, P.L. Show, W.H. Chen, T.H.P. Nguyen, Sustainability of the four generations of biofuels – A review. Int. J. Energy Res.44, 9266–9282 (2020).https://doi.org/10.1002/er.5557

    Article CAS  Google Scholar 

  30. H.A. Alalwan, A.H. Alminshid, H.A.S. Aljaafari, Promising evolution of biofuel generations. Subject review. Renew. Energy Focus.28, 127–139 (2019).https://doi.org/10.1016/j.ref.2018.12.006

    Article  Google Scholar 

  31. T.S. Angili, K. Grzesik, M. Kaltschmitt, Life cycle assessment of bioethanol production: A review of feedstock, technology and methodology. Energies14, 1–18 (2021)

    Google Scholar 

  32. K. Rajendran, E. Drielak, V. Sudarshan Varma, S. Muthusamy, G. Kumar, Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production – A review. Biomass Convers. Biorefin.8, 471–483 (2018).https://doi.org/10.1007/s13399-017-0269-3

    Article CAS  Google Scholar 

  33. J.A. Ferreira, P. Brancoli, S. Agnihotri, K. Bolton, M.J. Taherzadeh, A review of integration strategies of lignocelluloses and other wastes in 1st generation bioethanol processes. Process Biochem.75, 173–186 (2018).https://doi.org/10.1016/j.procbio.2018.09.006

    Article CAS  Google Scholar 

  34. P.R. Lennartsson, P. Erlandsson, M.J. Taherzadeh, Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour. Technol.165, 3–8 (2014).https://doi.org/10.1016/j.biortech.2014.01.127

    Article CAS  Google Scholar 

  35. R.B. Nair, M. Kalif, J.A. Ferreira, M.J. Taherzadeh, P.R. Lennartsson, Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes. Bioresour. Technol.245, 145–151 (2017).https://doi.org/10.1016/j.biortech.2017.08.125

    Article CAS  Google Scholar 

  36. I.D.O. Pereira, Â.A. Dos Santos, D.L. Gonçalves, M. Purificação, N.C. Guimarães, R. Tramontina, N. Coutouné, E. Zanella, A. Matsushika, B.U. Stambuk, J.L. Ienczak, Comparison of Spathaspora passalidarum and recombinant Saccharomyces cerevisiae for integration of first-and second-generation ethanol production. FEMS Yeast Res.21, 1–14 (2021).https://doi.org/10.1093/femsyr/foab048

    Article CAS  Google Scholar 

  37. S. Macrelli, M. Galbe, O. Wallberg, Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock. Biotechnol. Biofuels7, 1–16 (2014).https://doi.org/10.1186/1754-6834-7-26

    Article  Google Scholar 

  38. V. Anguselvi, R.E. Masto, A. Mukherjee, P.K. Singh, CO2 capture for industries by Algae, inAlgae, ed. by Y.K. Wong, (IntechOpen, 2019), pp. 1–10.https://doi.org/10.5772/intechopen.81800

    Chapter  Google Scholar 

  39. H. Chowdhury, B. Loganathan, I. Mustary, F. Alam, S.M.A. Mobin, Algae for biofuels: The third generation of feedstock, inSecond Third Gener. Feed., ed. by A. Basile, F. Dalena, (Elsevier Inc., 2019), pp. 323–344.https://doi.org/10.1016/B978-0-12-815162-4.00012-4

    Chapter  Google Scholar 

  40. K. Li, S. Liu, X. Liu, An overview of algae bioethanol production. Int. J. Energy Res.38, 965–977 (2014).https://doi.org/10.1002/er.3164

    Article CAS  Google Scholar 

  41. M.M. Ismail, G.A. Ismail, M.M. El-Sheekh, Potential assessment of some micro- and macroalgal species for bioethanol and biodiesel production, inEnergy Sources, Part A Recovery, Utilization, and Environmental Effects, (Taylor & Francis, 2020), pp. 1–17.https://doi.org/10.1080/15567036.2020.1758853

    Chapter  Google Scholar 

  42. D.F. Rocher, R.A. Cripwell, M. Viljoen-Bloom, Engineered yeast for enzymatic hydrolysis of laminarin from brown macroalgae. Algal Res.54, 1–10 (2021).https://doi.org/10.1016/j.algal.2021.102233

    Article  Google Scholar 

  43. K.T.X. Tong, I.S. Tan, H.C.Y. Foo, A.C.Y. Tiong, M.K. Lam, K.T. Lee, Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract. Bioresour. Technol.342, 1–12 (2021).https://doi.org/10.1016/j.biortech.2021.125880

    Article CAS  Google Scholar 

  44. T.V. Ramachandra, D. Hebbale, Bioethanol from macroalgae: Prospects and challenges. Renew. Sust. Energ. Rev.117, 1–18 (2020).https://doi.org/10.1016/j.rser.2019.109479

    Article CAS  Google Scholar 

  45. L. Malafronte, S. Yilmaz-Turan, A. Krona, M. Martinez-Sanz, F. Vilaplana, P. Lopez-Sanchez, Macroalgae suspensions prepared by physical treatments: Effect of polysaccharide composition and microstructure on the rheological properties. Food Hydrocoll.120, 1–11 (2021).https://doi.org/10.1016/j.foodhyd.2021.106989

    Article CAS  Google Scholar 

  46. R.S. Dharshini, A.A. Fathima, S.R. Dharani, M. Ramya, Utilization of alginate from brown macroalgae for ethanol production by clostridium phytofermentans. Appl. Biochem. Microbiol.56, 173–178 (2020).https://doi.org/10.1134/S0003683820020040

    Article CAS  Google Scholar 

  47. K.K. Kadimpati, S. Thadikamala, K. Devarapalli, L. Banoth, K.B. Uppuluri, Characterization and hydrolysis optimization of Sargassum cinereum for the fermentative production of 3G bioethanol. Biomass Convers. Biorefin., 1 (2021).https://doi.org/10.1007/s13399-020-01270-3

  48. A. Andreeva, E. Budenkova, O. Babich, S. Sukhikh, V. Dolganyuk, P. Michaud, S. Ivanova, Influence of carbohydrate additives on the growth rate of microalgae biomass with an increased carbohydrate content. Mar. Drugs19, 1–18 (2021).https://doi.org/10.3390/md19070381

    Article CAS  Google Scholar 

  49. B.C.B. de Freitas, E.H. Brächer, E.G. de Morais, D.I.P. Atala, M.G. de Morais, J.A.V. Costa, Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content. Environ. Technol.40, 1062–1070 (2019).https://doi.org/10.1080/09593330.2017.1417491

    Article CAS  Google Scholar 

  50. Z.U. Rehman, A.K. Anal, Enhanced lipid and starch productivity of microalga (Chlorococcum sp. TISTR 8583) with nitrogen limitation following effective pretreatments for biofuel production. Biotechnol. Rep.20, 1–8 (2018).https://doi.org/10.1016/j.btre.2018.e00298

    Article  Google Scholar 

  51. J.D. Moha-León, I.A. Pérez-Legaspi, L.A. Ortega-Clemente, I. Rubio-Franchini, E. Ríos-Leal, Improving the lipid content of Nannochloropsis oculata by a mutation-selection program using UV radiation and quizalofop. J. Appl. Phycol.31, 191–199 (2019).https://doi.org/10.1007/s10811-018-1568-1

    Article CAS  Google Scholar 

  52. H. Singh, J.L. Varanasi, S. Banerjee, D. Das, Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock. Energy188, 1–14 (2019).https://doi.org/10.1016/j.energy.2019.116039

    Article CAS  Google Scholar 

  53. N. Haris, H. Manan, M. Jusoh, H. Khatoon, T. Katayama, N.A. Kasan, Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquac. Rep.22, 1–15 (2022).https://doi.org/10.1016/j.aqrep.2021.100925

    Article  Google Scholar 

  54. S. Kawai, K. Murata, Biofuel production based on carbohydrates from both brown and red macroalgae: Recent developments in key biotechnologies. Int. J. Mol. Sci.17, 1–17 (2016).https://doi.org/10.3390/ijms17020145

    Article CAS  Google Scholar 

  55. C. Yarkent, B.A. Guler, C. Gurlek, Y. Sahin, A. Kose, S.S. Oncel, E. Imamoglu, Algal alginate in biotechnology: Biosynthesis and applications, inProperties and Applications of Alginates, ed. by I. Deniz, E. Imamoglu, T. Keskin-Gundogdu, (IntechOpen, 2021), pp. 1–26.https://doi.org/10.5772/intechopen.101407

    Chapter  Google Scholar 

  56. I.S. Tan, M.K. Lam, H.C.Y. Foo, S. Lim, K.T. Lee, Advances of macroalgae biomass for the third generation of bioethanol production. Chin. J. Chem. Eng.28, 502–517 (2020).https://doi.org/10.1016/j.cjche.2019.05.012

    Article CAS  Google Scholar 

  57. C.E. de Farias Silva, A. Bertucco, Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochem.51, 1833–1842 (2016).https://doi.org/10.1016/j.procbio.2016.02.016

    Article CAS  Google Scholar 

  58. G. Gao, J.G. Burgess, M. Wu, S. Wang, K. Gao, Using macroalgae as biofuel: Current opportunities and challenges. Bot. Mar.63, 355–370 (2020).https://doi.org/10.1515/bot-2019-0065

    Article CAS  Google Scholar 

  59. G.E. Lakatos, K. Ranglová, J.C. Manoel, T. Grivalský, J. Kopecký, J. Masojídek, Bioethanol production from microalgae polysaccharides. Folia Microbiol. (Praha)64, 627–644 (2019).https://doi.org/10.1007/s12223-019-00732-0

    Article CAS  Google Scholar 

  60. V. Godbole, M.K. Pal, P. Gautam, A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. Algal Res.58, 1–11 (2021).https://doi.org/10.1016/j.algal.2021.102436

    Article  Google Scholar 

  61. R. Rengel, R.T. Smith, R.P. Haslam, O. Sayanova, M. Vila, R. León, Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. Algal Res.31, 183–193 (2018).https://doi.org/10.1016/j.algal.2018.02.009

    Article  Google Scholar 

  62. T.H. Nassir, S.T.G. Al-Sahlany, Bioethanol production from agricultural wastes by Zymomonas mobilis and used in vinegar production. J. Microbiol. Biotechnol. Food Sci.11, 1–7 (2021).https://doi.org/10.15414/JMBFS.3709

    Article  Google Scholar 

  63. S. Maity, N. Mallick, Trends and advances in sustainable bioethanol production by marine microalgae: A critical review. J. Clean. Prod.345, 1–19 (2022).https://doi.org/10.1016/j.jclepro.2022.131153

    Article CAS  Google Scholar 

  64. K.A. Selim, D.E. El-Ghwas, S.M. Easa, M.I. Abdelwahab Hassan, Bioethanol a microbial biofuel metabolite; new insights of yeasts metabolic engineering. Fermentation4, 1–27 (2018).https://doi.org/10.3390/fermentation4010016

    Article CAS  Google Scholar 

  65. A. Ajit, A.Z. Sulaiman, Y. Chisti, Production of bioethanol by Zymomonas mobilis in high-gravity extractive fermentations. Food Bioprod. Process.102, 123–135 (2016).https://doi.org/10.1016/j.fbp.2016.12.006

    Article CAS  Google Scholar 

  66. R. Łukajtis, K. Kucharska, I. Hołowacz, P. Rybarczyk, K. Wychodnik, E. Słupek, P. Nowak, M. Kami, Comparison and optimization of saccharification conditions of alkaline pre-treated triticale straw for acid and enzymatic hydrolysis followed by ethanol fermentation. Energies11, 639 (2018).https://doi.org/10.3390/en11030639

    Article CAS  Google Scholar 

  67. N. Ahmed, B.R. Dhar, B.K. Pramanik, H. Forehead, W.E. Price, F.I. Hai, A cookbook for bioethanol from macroalgae: Review of selecting and combining processes to enhance bioethanol production. Curr. Pollut. Rep.7, 476–493 (2021).https://doi.org/10.1007/s40726-021-00202-7

    Article CAS  Google Scholar 

  68. R. Harun, B. Liu, M.K. Danquah, Analysis of process configurations for bioethanol production from microalgal biomass, inProgress in Biomass and Bioenergy Production, ed. by S. Shaukat, (IntechOpen, 2011), pp. 395–408.https://doi.org/10.5772/17468

    Chapter  Google Scholar 

  69. D. Greetham, A. Zaky, O. Makanjuola, C. Du, A brief review on bioethanol production using marine biomass, marine microorganism and seawater. Curr. Opin. Green Sustain. Chem.14, 53–59 (2018)

    Article  Google Scholar 

  70. I. Edeh, Bioethanol production: An overview, inBioethanol Technologies, ed. by F. Inambao, (IntechOpen, 2020).https://doi.org/10.5772/intechopen.94895

    Chapter  Google Scholar 

  71. N. Sarkar, S.K. Ghosh, S. Bannerjee, K. Aikat, Bioethanol production from agricultural wastes: An overview. Renew. Energy37, 19–27 (2012).https://doi.org/10.1016/j.renene.2011.06.045

    Article CAS  Google Scholar 

  72. T.J. Tse, D.J. Wiens, M.J.T. Reaney, Production of bioethanol – A review of factors affecting ethanol yield. Fermentation7, 1–18 (2021)

    Article  Google Scholar 

  73. A. Zoghlami, G. Paës, Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Front. Chem.7, 1–14 (2019).https://doi.org/10.3389/fchem.2019.00874

    Article CAS  Google Scholar 

  74. G. Brodeur, E. Yau, K. Badal, J. Collier, K.B. Ramachandran, S. Ramakrishnan, Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzym. Res.2011, 1–18 (2011).https://doi.org/10.4061/2011/787532

    Article CAS  Google Scholar 

  75. D.P. Maurya, A. Singla, S. Negi, An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech.5, 597–609 (2015).https://doi.org/10.1007/s13205-015-0279-4

    Article  Google Scholar 

  76. M. Neves, T. Kimura, N. Shimizu, M. Nakajima, State of the art and future trends of bioethanol production. Dyn. Biochem. Process. Biotechnol. Mol. Biol.1, 1–14 (2007)

    Google Scholar 

  77. R. Muktham, S.K. Bhargava, S. Bankupalli, A.S. Ball, A review on 1st and 2nd generation bioethanol production-recent progress. J. Sustain. Bioenergy Syst.6, 72–92 (2016)

    Article CAS  Google Scholar 

  78. I. Egüés, C. Sanchez, I. Mondragon, J. Labidi, Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresour. Technol.103, 239–248 (2012).https://doi.org/10.1016/j.biortech.2011.09.139

    Article CAS  Google Scholar 

  79. E.C. Bensah, M. Mensah, Chemical pretreatment methods for the production of cellulosic ethanol: Technologies and innovations. Int. J. Chem. Eng.2013, 1–21 (2013).https://doi.org/10.1155/2013/719607

    Article CAS  Google Scholar 

  80. J.R. Melendez, B. Mátyás, S. Hena, D.A. Lowy, A. El Salous, Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses. Renew. Sust. Energ. Rev.160, 1–16 (2022).https://doi.org/10.1016/j.rser.2022.112260

    Article CAS  Google Scholar 

  81. D. Özçimen, B. İnan, An overview of bioethanol production from Algae, inBiofuels – Status Perspective, ed. by K. Biernat, (IntechOpen, 2015), pp. 141–162.https://doi.org/10.5772/59305

    Chapter  Google Scholar 

  82. B. Joshi, M. Raj, B. Dinita, S. Jarina, J. Rajani, Lignocellulosic ethanol production: Current practices and recent developments. Biotechnol. Mol. Biol. Rev.6, 172–182 (2011)

    CAS  Google Scholar 

  83. H. Zabed, G. Faruq, J.N. Sahu, M.S. Azirun, R. Hashim, A. Nasrulhaq Boyce, Bioethanol production from fermentable sugar juice. Sci. World J.2014, 1–11 (2014).https://doi.org/10.1155/2014/957102

    Article CAS  Google Scholar 

  84. S.H. Mohd Azhar, R. Abdulla, S.A. Jambo, H. Marbawi, J.A. Gansau, A.A. Mohd Faik, K.F. Rodrigues, Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep.10, 52–61 (2017).https://doi.org/10.1016/j.bbrep.2017.03.003

    Article  Google Scholar 

  85. S. Brethauer, C.E. Wyman, Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour. Technol.101, 4862–4874 (2010).https://doi.org/10.1016/j.biortech.2009.11.009

    Article CAS  Google Scholar 

  86. C.G. Liu, Y. Xiao, X.X. Xia, X.Q. Zhao, L. Peng, P. Srinophakun, F.W. Bai, Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol. Adv.37, 491–504 (2019).https://doi.org/10.1016/j.biotechadv.2019.03.002

    Article CAS  Google Scholar 

  87. K. Sakimoto, M. Kanna, Y. Matsumura, Kinetic model of cellulose degradation using simultaneous saccharification and fermentation. Biomass Bioenergy99, 116–121 (2017).https://doi.org/10.1016/j.biombioe.2017.02.016

    Article CAS  Google Scholar 

  88. B.Y. Yang, M.H. Cheng, C.H. Ko, Y.N. Wang, W.H. Chen, W.S. Hwang, Y.P. Yang, H.T. Chen, F.C. Chang, Potential bioethanol production from Taiwanese chenopods (Chenopodium formosanum). Energy76, 59–65 (2014).https://doi.org/10.1016/j.energy.2014.03.046

    Article CAS  Google Scholar 

  89. W.H. Van Zyl, L.R. Lynd, R. Den Haan, J.E. McBride, Consolidated bioprocessing for bioethanol production using saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol.108, 205–235 (2007).https://doi.org/10.1007/10_2007_061

    Article CAS  Google Scholar 

  90. L. Laopaiboon, P. Thanonkeo, P. Jaisil, P. Laopaiboon, Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J. Microbiol. Biotechnol.23, 1497–1501 (2007).https://doi.org/10.1007/s11274-007-9383-x

    Article CAS  Google Scholar 

  91. R. Liu, F. Shen, Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresour. Technol.99, 847–854 (2008).https://doi.org/10.1016/j.biortech.2007.01.009

    Article CAS  Google Scholar 

  92. M.Ü. Ünal, G. Chowdhury, A. Şener, Effect of temperature and nitrogen supplementation on bioethanol production from waste bread, watermelon and muskmelon by Saccharomyces cerevisiae. Biofuels13, 395–399 (2022).https://doi.org/10.1080/17597269.2020.1724440

    Article CAS  Google Scholar 

  93. P. Moodley, E.B. Gueguim Kana, Bioethanol production from sugarcane leaf waste: Effect of various optimized pretreatments and fermentation conditions on process kinetics. Biotechnol. Rep.22, 1–8 (2019).https://doi.org/10.1016/j.btre.2019.e00329

    Article  Google Scholar 

  94. M. Linde, E.L. Jakobsson, M. Galbe, G. Zacchi, Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy32, 326–332 (2008).https://doi.org/10.1016/j.biombioe.2007.09.013

    Article CAS  Google Scholar 

  95. T.I. Georgieva, M.J. Mikkelsen, B.K. Ahring, Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl. Biochem. Biotechnol.145, 99–110 (2008).https://doi.org/10.1007/s12010-007-8014-1

    Article CAS  Google Scholar 

  96. N.W. Burman, C.M. Sheridan, K.G. Harding, Lignocellulosic bioethanol production from grasses pre-treated with acid mine drainage: Modeling and comparison of SHF and SSF. Bioresour. Technol. Rep.7, 1–8 (2019).https://doi.org/10.1016/j.biteb.2019.100299

    Article  Google Scholar 

  97. B. Erdei, D. Hancz, M. Galbe, G. Zacchi, SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production. Biotechnol. Biofuels6, 1–14 (2013).https://doi.org/10.1186/1754-6834-6-169

    Article CAS  Google Scholar 

  98. B. Erdei, B. Franká, M. Galbe, G. Zacchi, Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnol. Biofuels5, 1–13 (2012).https://doi.org/10.1186/1754-6834-5-12

    Article CAS  Google Scholar 

  99. M.A. Sulfahri, S.B. Sumitro, M. Saptasari, Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis. Biofuels7, 621–626 (2016).https://doi.org/10.1080/17597269.2016.1168028

    Article CAS  Google Scholar 

  100. S. Lee, Y. Oh, D. Kim, D. Kwon, C. Lee, J. Lee, Converting carbohydrates extracted from marine algae into ethanol using various ethanolic escherichia coli strains. Appl. Biochem. Biotechnol.164, 878–888 (2011).https://doi.org/10.1007/s12010-011-9181-7

    Article CAS  Google Scholar 

  101. J.M.M. Adams, T.A. Toop, I.S. Donnison, J.A. Gallagher, Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour. Technol.102, 9976–9984 (2011).https://doi.org/10.1016/j.biortech.2011.08.032

    Article CAS  Google Scholar 

  102. S.H. Ho, S.W. Huang, C.Y. Chen, T. Hasunuma, A. Kondo, J.S. Chang, Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour. Technol.135, 191–198 (2013).https://doi.org/10.1016/j.biortech.2012.10.015

    Article CAS  Google Scholar 

  103. J.H. Park, J.Y. Hong, H.C. Jang, S.G. Oh, S.H. Kim, J.J. Yoon, Y.J. Kim, Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol.108, 83–88 (2012).https://doi.org/10.1016/j.biortech.2011.12.065

    Article CAS  Google Scholar 

  104. O.K. Lee, A.L. Kim, D.H. Seong, C.G. Lee, Y.T. Jung, J.W. Lee, E.Y. Lee, Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol.132, 197–201 (2013).https://doi.org/10.1016/j.biortech.2013.01.007

    Article CAS  Google Scholar 

  105. J.K. Kim, B.H. Um, T.H. Kim, Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Korean J. Chem. Eng.29, 209–214 (2012).https://doi.org/10.1007/s11814-011-0169-3

    Article CAS  Google Scholar 

  106. A. Khalid, M. Aslam, M.A. Qyyum, A. Faisal, A.L. Khan, F. Ahmed, M. Lee, J. Kim, N. Jang, I.S. Chang, A.A. Bazmi, M. Yasin, Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renew. Sust. Energ. Rev.105, 427–443 (2019).https://doi.org/10.1016/j.rser.2019.02.002

    Article CAS  Google Scholar 

  107. S. Skullong, C. Thianpong, N. Jayranaiwachira, P. Promvonge, Experimental and numerical heat transfer investigation in turbulent square-duct flow through oblique horseshoe baffles. Chem. Eng. Process. Process Intensif.99, 58–71 (2016).https://doi.org/10.1016/j.cep.2015.11.008

    Article CAS  Google Scholar 

  108. R. Parajuli, T. Dalgaard, U. Jørgensen, A. Peter, S. Adamsen, M. Trydeman, M. Birkved, M. Gylling, J. Kofod, Biorefining in the prevailing energy and materials crisis: A review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew. Sust. Energ. Rev.43, 244–263 (2015).https://doi.org/10.1016/j.rser.2014.11.041

    Article CAS  Google Scholar 

  109. J.H. Clark, F.E.I. Deswarte, The biorefinery concept – An integrated approach, inIntroduction to Chemicals from Biomass, ed. by J.H. Clark, F. Deswarte, (Wiley, 2008), pp. 1–20

    Chapter  Google Scholar 

  110. V.G. Zuin, L.Z. Ramin, Green and sustainable separation of natural products from agro – Industrial waste: Challenges, potentialities, and perspectives on emerging approaches. Top. Curr. Chem.376, 1–54 (2018).https://doi.org/10.1007/s41061-017-0182-z

    Article CAS  Google Scholar 

  111. S. Takkellapati, T. Li, M.A. Gonzalez, An overview of biorefinery derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Techn. Environ. Policy20, 1–30 (2018).https://doi.org/10.1007/s10098-018-1568-5.An

    Article  Google Scholar 

  112. E. Paone, T. Tabanelli, F. Mauriello, ScienceDirect the rise of lignin biorefinery. Curr. Opin. Green Sustain. Chem.24, 1–6 (2020).https://doi.org/10.1016/j.cogsc.2019.11.004

    Article  Google Scholar 

  113. E. De Jong, G. Jungmeier, Biorenery concepts in comparison to petrochemical re neries, inIndustrial Biorefineries and White Biotechnology, ed. by A. Pandey, R. Höfer, M. Taherzadeh, K.M. Nampoothiri, C. Larroche, (Elsevier, 2015), pp. 3–33.https://doi.org/10.1016/B978-0-444-63453-5.00001-X

    Chapter  Google Scholar 

  114. Z. Usmani, M. Sharma, A.K. Awasthi, T. Lukk, M.G. Tuohy, L. Gong, P. Nguyen-tri, A.D. Goddard, R.M. Bill, S.C. Nayak, V.K. Gupta, Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization. Renew. Sust. Energ. Rev.148, 1–18 (2021).https://doi.org/10.1016/j.rser.2021.111258

    Article CAS  Google Scholar 

  115. J.F.S.C. Filho, P.N. Romano, J.M.A.R. de Almeida, E.F. Sousa-aguiar, Catalytic routes: From bioethanol production model towards the integrated. Curr. Opin. Green Sustain. Chem.20, 33–38 (2019).https://doi.org/10.1016/j.cogsc.2019.09.002

    Article  Google Scholar 

  116. T. Suganya, M. Varman, H.H. Masjuki, S. Renganathan, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sust. Energ. Rev.55, 909–941 (2016).https://doi.org/10.1016/j.rser.2015.11.026

    Article CAS  Google Scholar 

  117. S. Wang, Y. Mukhambet, S. Esakkimuthu, A.E. Abomohra, Integrated microalgal biorefinery – Routes, energy, economic and environmental perspectives. J. Clean. Prod.348, 1–12 (2022).https://doi.org/10.1016/j.jclepro.2022.131245

    Article CAS  Google Scholar 

  118. K.W. Chew, J.Y. Yap, P.L. Show, N.H. Suan, J.C. Juan, T.C. Ling, D.J. Lee, J.S. Chang, Microalgae biorefinery: High value products perspectives. Bioresour. Technol.229, 53–62 (2017).https://doi.org/10.1016/j.biortech.2017.01.006

    Article CAS  Google Scholar 

  119. Á.-D. González-Delgado, V. Kafarov, Microalgae based biorefinery: Issues to consider, Ciencia. Tecnol. Futur.4, 5–22 (2011)

    Article  Google Scholar 

  120. K. Tian, X. Tong, I. Shi, T. Henry, C. Yew, F. Man, K. Lam, S. Lim, K.T. Lee, Advancement of biorefinery – Derived platform chemicals from macroalgae: A perspective for bioethanol and lactic acid. Biomass Convers. Biorefin., 1–37 (2022).https://doi.org/10.1007/s13399-022-02561-7

  121. T. Casalini, F. Rossi, A. Castrovinci, G. Perale, A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol.7, 1–16 (2019).https://doi.org/10.3389/fbioe.2019.00259

    Article  Google Scholar 

  122. S. Mutturi, G. Palmqvist, G. Lidén, Developments in bioethanol fuel-focused biorefineries, inAdvances in Biorefineries, ed. by K. Waldron, (Woodhead Publishing, 2014), pp. 259–302.https://doi.org/10.1533/9780857097385.1.259

    Chapter  Google Scholar 

  123. V. Balan, Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol.2014, 1–31 (2014).https://doi.org/10.1155/2014/463074

    Article CAS  Google Scholar 

  124. R. Ahorsu, F. Medina, M. Constantí, Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review. Energies11, 1–19 (2018).https://doi.org/10.3390/en11123366

    Article CAS  Google Scholar 

  125. W.D. Prasetyo, Z.A. Putra, M.R. Bilad, T.M.I. Mahlia, Y. Wibisono, N.A.H. Nordin, M.D.H. Wirzal, Insight into the sustainable integration of bio- and petroleum refineries for the production of fuels and chemicals. Polymers (Basel)12, 1–24 (2020)

    Google Scholar 

  126. A. Abdulvahitoğlu, Alternatif Yakıt Olarak Lignoselülozik Etanol Üretimi: İplikhane Pamuk Telefleri Üzerine Bir Çalışma. Çukurova Üniversitesi Mühendislik Mimar. Fakültesi Derg34, 35–44 (2019)

    Article  Google Scholar 

  127. K. Wang, Y.M. Wei, X. Zhang, A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs? Energy Policy46, 574–584 (2012).https://doi.org/10.1016/j.enpol.2012.04.038

    Article  Google Scholar 

  128. M. Brandão, E. Azzi, R.M.L. Novaes, A. Cowie, The modelling approach determines the carbon footprint of biofuels: The role of LCA in informing decision makers in government and industry. Clean. Environ. Syst.2, 1–8 (2021).https://doi.org/10.1016/j.cesys.2021.100027

    Article  Google Scholar 

  129. W.D. Huang, Y.H.P. Zhang, Energy efficiency analysis: Biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems. PLoS One6, 1–10 (2011).https://doi.org/10.1371/journal.pone.0022113

    Article CAS  Google Scholar 

  130. V.S. Sikarwar, M. Zhao, P.S. Fennell, N. Shah, E.J. Anthony, Progress in biofuel production from gasification. Prog. Energy Combust. Sci.61, 189–248 (2017).https://doi.org/10.1016/j.pecs.2017.04.001

    Article  Google Scholar 

  131. H.T. Tan, K.R. Corbin, G.B. Fincher, Emerging technologies for the production of renewable liquid transport fuels from biomass sources enriched in plant cell walls. Front. Plant Sci.7, 1–18 (2016).https://doi.org/10.3389/fpls.2016.01854

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey

    Bahar Aslanbay Guler, Ceren Gurlek, Yaprak Sahin, Suphi S. Oncel & Esra Imamoglu

Authors
  1. Bahar Aslanbay Guler
  2. Ceren Gurlek
  3. Yaprak Sahin
  4. Suphi S. Oncel
  5. Esra Imamoglu

Corresponding author

Correspondence toEsra Imamoglu.

Editor information

Editors and Affiliations

  1. Department of Bioengineering, Ege University, Bornova, Izmir, Türkiye

    Suphi S. Oncel

Rights and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslanbay Guler, B., Gurlek, C., Sahin, Y., Oncel, S.S., Imamoglu, E. (2023). Renewable Bioethanol for a Sustainable Green Future. In: Oncel, S.S. (eds) A Sustainable Green Future. Springer, Cham. https://doi.org/10.1007/978-3-031-24942-6_21

Download citation

Keywords

Publish with us

Profiles

  1. Ceren GurlekView author profile

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2026 Movatter.jp