Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Capturing Dependencies Within Machine Learning via a Formal Process Model

  • Conference paper
  • First Online:

Abstract

The development of Machine Learning (ML) models is more than just a special case of software development (SD): ML models acquire properties and fulfill requirements even without direct human interaction in a seemingly uncontrollable manner. Nonetheless, the underlying processes can be described in a formal way. We define a comprehensive SD process model for ML that encompasses most tasks and artifacts described in the literature in a consistent way. In addition to the production of the necessary artifacts, we also focus on generating and validating fitting descriptions in the form of specifications. We stress the importance of further evolving the ML model throughout its life-cycle even after initial training and testing. Thus, we provide various interaction points with standard SD processes in which ML often is an encapsulated task. Further, our SD process model allows to formulate ML as a (meta-) optimization problem. If automated rigorously, it can be used to realize self-adaptive autonomous systems. Finally, our SD process model features a description of time that allows to reason about the progress within ML development processes. This might lead to further applications of formal methods within the field of ML.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. IEEE standard for system and software verification and validation. IEEE Std. 1012–2012, pp. 1–223 (2012).https://doi.org/10.1109/IEEESTD.2012.6204026

  2. Akkiraju, R., et al.: Characterizing machine learning processes: a maturity framework. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 17–31. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-58666-9_2

    Chapter  Google Scholar 

  3. Amershi, S., et al.: Software engineering for machine learning: a case study. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 291–300 (2019)

    Google Scholar 

  4. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering self-adaptive multi-agent systems: the adelfe methodology. In: Agent-Oriented Methodologies, vol. 7, pp. 172–202. Idea Group Publishing (2005)

    Google Scholar 

  5. Bosch, J., Crnkovic, I., Olsson, H.H.: Engineering AI systems: a research agenda.arxiv:2001.07522 (2020)

  6. Bourque, P., Fairley, R.E. (eds.): SWEBOK: guide to the software engineering body of knowledge. IEEE Computer Society, version 3.0 edn (2014).https://www.swebok.org

  7. Fainekos, G., Hoxha, B., Sankaranarayanan, S.: Robustness of Specifications and its applications to falsification, parameter mining, and runtime monitoring with S-TaLiRo. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 27–47. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-32079-9_3

    Chapter  Google Scholar 

  8. Gabor, T., et al.: The scenario coevolution paradigm: adaptive quality assurance for adaptive systems. Int. J. Softw. Tools Technology Transfer22(4), 457–476 (2020)

    Article  Google Scholar 

  9. Garlan, D., Schmerl, B., Cheng, S.W.: Software Architecture Based Self Adaptation, pp. 31–55. Springer, Boston (2009).https://doi.org/10.1007/978-0-387-89828-5_2

  10. Geihs, K.: Selbst-adaptive software. Informatik-Spektrum31(2), 133–145 (2008)

    Article  Google Scholar 

  11. Giray, G.: A software engineering perspective on engineering machine learning systems: state of the art and challenges. J. Syst. Softw.180, 111031 (2021)

    Article  Google Scholar 

  12. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based Syst.212, 106622 (2021)

    Article  Google Scholar 

  13. Hernandez, D., Brown, T.B.: Measuring the algorithmic efficiency of neural networks.arxiv:2005.04305 (2020)

  14. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The ensemble development life cycle and best practices for collective autonomic systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Cham (2015).https://doi.org/10.1007/978-3-319-16310-9_9

    Chapter  Google Scholar 

  15. Kreuzberger, D., Kühl, N., Hirschl, S.: Machine learning operations (mlops): overview, definition, and architecture.arxiv:2205.02302 (2022).https://doi.org/10.48550/ARXIV.2205.02302

  16. Kröger, F., Merz, S.: Temporal Logic and State Systems. Springer, Heidelberg (2008).https://doi.org/10.1007/978-3-540-68635-4

    Book MATH  Google Scholar 

  17. Kruchten, P.: The Rational Unified Process-An Introduction (2000)

    Google Scholar 

  18. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review of machine learning interpretability methods. Entropy23(1), 18 (2021)

    Article  Google Scholar 

  19. Lwakatare, L.E., Crnkovic, I., Bosch, J.: DevOps for AI-challenges in development of ai-enabled applications. In: 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–6. IEEE (2020)

    Google Scholar 

  20. Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H., Crnkovic, I.: A taxonomy of software engineering challenges for machine learning systems: an empirical investigation, pp. 227–243 (2019)

    Google Scholar 

  21. Martínez-Fernández, S., et al.: Software engineering for AI-based systems: a survey.arxiv:2105.01984 (2021)

  22. McKinley, P., Sadjadi, S., Kasten, E., Cheng, B.: Composing adaptive software. Computer37(7), 56–64 (2004)

    Article  Google Scholar 

  23. Müller., R., et al.: Acoustic leak detection in water networks. In: Proceedings of the 13th International Conference on Agents and Artificial Intelligence, vol. 2: ICAART, pp. 306–313 (2021).https://doi.org/10.5220/0010295403060313

  24. Pappagallo, A., Massini, A., Tronci, E.: Monte carlo based statistical model checking of cyber-physical systems: a review. Information11(12), 588 (2020)

    Article  Google Scholar 

  25. Paullada, A., Raji, I.D., Bender, E.M., Denton, E., Hanna, A.: Data and its (dis)contents: a survey of dataset development and use in machine learning research. Patterns2(11), 100336 (2021)

    Article  Google Scholar 

  26. Phan, T., et al.: Learning and testing resilience in cooperative multi-agent systems. In: Proceedings of the 19th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2020 (2020)

    Google Scholar 

  27. Rahman, M.S., Rivera, E., Khomh, F., Guéhéneuc, Y., Lehnert, B.: Machine learning software engineering in practice: an ind. case study.arXiv:1906.07154 (2019)

  28. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD, KDD 2016, pp. 1135–1144. ACM (2016)

    Google Scholar 

  29. Ritz, F., et al.: Specification aware multi-agent reinforcement learning. In: Agents and Artificial Intelligence, pp. 3–21. Springer, Heidelberg (2022).https://doi.org/10.1007/978-3-031-10161-8_1

  30. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell.1(5), 206–215 (2019)

    Article  Google Scholar 

  31. Sevilla, J., Villalobos, P.: Parameter counts in machine learning. AI Alignment Forum (2021).https://www.alignmentforum.org/posts/GzoWcYibWYwJva8aL

  32. Sinreich, D.: An architectural blueprint for autonomic computing (2006).https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

  33. Studer, S., et al.: Towards CRISP-ML(Q): a machine learning process model with quality assurance methodology. Mach. Learn. Knowl. Extract.3(2), 392–413 (2021)

    Article  Google Scholar 

  34. Watanabe, Y., et al.: Preliminary systematic literature review of machine learning system development process.arxiv:1910.05528 (2019)

  35. Wirsing, M., Belzner, L.: Towards systematically engineering autonomous systems using reinforcement learning and planning. In: Proceedings of Analysis, Verification and Transformation for Declarative Programming and Intelligent Systems (AVERTIS) (2022).https://doi.org/10.13140/RG.2.2.10618.16328

  36. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015).https://doi.org/10.1007/978-3-319-16310-9

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Mobile and Distributed Systems Group, LMU Munich, Munich, Germany

    Fabian Ritz, Thomy Phan, Andreas Sedlmeier, Philipp Altmann, Claudia Linnhoff-Popien & Thomas Gabor

  2. Technology, Siemens AG, Munich, Germany

    Jan Wieghardt, Reiner Schmid, Horst Sauer & Cornel Klein

Authors
  1. Fabian Ritz

    You can also search for this author inPubMed Google Scholar

  2. Thomy Phan

    You can also search for this author inPubMed Google Scholar

  3. Andreas Sedlmeier

    You can also search for this author inPubMed Google Scholar

  4. Philipp Altmann

    You can also search for this author inPubMed Google Scholar

  5. Jan Wieghardt

    You can also search for this author inPubMed Google Scholar

  6. Reiner Schmid

    You can also search for this author inPubMed Google Scholar

  7. Horst Sauer

    You can also search for this author inPubMed Google Scholar

  8. Cornel Klein

    You can also search for this author inPubMed Google Scholar

  9. Claudia Linnhoff-Popien

    You can also search for this author inPubMed Google Scholar

  10. Thomas Gabor

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toFabian Ritz.

Editor information

Editors and Affiliations

  1. University of Limerick, CSIS and Lero, Limerick, Ireland

    Tiziana Margaria

  2. TU Dortmund, Dortmund, Germany

    Bernhard Steffen

Rights and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ritz, F.et al. (2022). Capturing Dependencies Within Machine Learning via a Formal Process Model. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. ISoLA 2022. Lecture Notes in Computer Science, vol 13703. Springer, Cham. https://doi.org/10.1007/978-3-031-19759-8_16

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp