Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Light the Signal: Optimization of Signal Leakage Attacks Against LWE-Based Key Exchange

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 13554))

Included in the following conference series:

  • 2758Accesses

Abstract

Key exchange protocols from the learning with errors (LWE) problem share many similarities with the Diffie-Hellman-Merkle (DHM) protocol, which plays a central role in securing our Internet. Therefore, there has been a long time effort in designing authenticated key exchange directly from LWE to mirror the advantages of DHM-based protocols. In this paper, we revisit signal leakage attacks and show that the severity of these attacks against LWE-based (authenticated) key exchange is still underestimated.

In particular, by converting the problem of launching a signal leakage attack into a coding problem, we can significantly reduce the needed number of queries to reveal the secret key. Specifically, for DXL-KE we reduce the queries from 1,266 to only 29, while for DBS-KE, we need only 748 queries, a great improvement over the previous 1,074,434 queries. Moreover, our new view of signals as binary codes enables recognizing vulnerable schemes more easily. As such we completely recover the secret key of a password-based authenticated key exchange scheme by Dabra et al. with only 757 queries and partially reveal the secret used in a two-factor authentication by Wang et al. with only one query. The experimental evaluation supports our theoretical analysis and demonstrates the efficiency and effectiveness of our attacks. Our results caution against underestimating the power of signal leakage attacks as they are applicable even in settings with a very restricted number of interactions between adversary and victim.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    It is important to point out that these attacks are against candidates designed to resist passive adversaries. Hence, security claims are not invalidated by these attacks.

  2. 2.

    Interestingly, assigning corresponding binary values as codewords fails because we fail to find suitable values in the next step.

  3. 3.

    Other values than 1260 are possible but at this time, our attack needs\({\textbf {P}}_A\) to be a constant polynomial.

References

  1. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer, Heidelberg (2005).https://doi.org/10.1007/978-3-540-30580-4_6

    Chapter MATH  Google Scholar 

  2. Akleylek, S., Seyhan, K.: A probably secure bi-gisis based modified AKE scheme with reusable keys. IEEE Access8, 26210–26222 (2020)

    Article  Google Scholar 

  3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconciliation. Cryptology ePrint Archive, Report 2016/1157 (2016)

    Google Scholar 

  4. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Misuse attacks on post-quantum cryptosystems. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 747–776. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-17656-3_26

    Chapter  Google Scholar 

  5. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 272–292. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-12612-4_14

    Chapter  Google Scholar 

  6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994).https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  7. Bindel, N., Stebila, D., Veitch, S.: Improved attacks against key reuse in learning with errors key exchange. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 168–188. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-88238-9_9

    Chapter MATH  Google Scholar 

  8. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998).https://doi.org/10.1007/BFb0055716

    Chapter  Google Scholar 

  9. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: S &P 2015, pp. 553–570. IEEE (2015)

    Google Scholar 

  10. Brendel, J., Fiedler, R., Günther, F., Janson, C., Stebila, D.: Post-quantum Asynchronous Deniable Key Exchange and the Signal Handshake. Cryptology ePrint Archive, Report 2021/769 (2021)

    Google Scholar 

  11. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001).https://doi.org/10.1007/3-540-44987-6_28

    Chapter  Google Scholar 

  12. Chang, S.H., Cosman, P.C., Milstein, L.B.: Chernoff-type bounds for the Gaussian error function. IEEE Trans. Commun.59(11), 2939–2944 (2011)

    Article  Google Scholar 

  13. Dabra, V., Bala, A., Kumari, S.: LBA-PAKE: lattice-based anonymous password authenticated key exchange for mobile devices. IEEE Syst. J.15(4), 5067–5077 (2021)

    Article  Google Scholar 

  14. Debris-Alazard, T., Ducas, L., van Woerden, W.P.: An algorithmic reduction theory for binary codes: Lll and more. Cryptology ePrint Archive, Report 2020/869 (2020).https://ia.cr/2020/869

  15. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory22(6), 644–654 (1976)

    Article MathSciNet  Google Scholar 

  16. Ding, J., Alsayigh, S., Saraswathy, R., Fluhrer, S., Lin, X.: Leakage of signal function with reused keys in RLWE key exchange. In: ICC 2017, pp. 1–6. IEEE (2017)

    Google Scholar 

  17. Ding, J., Branco, P., Schmitt, K.: Key exchange and authenticated key exchange with reusable keys based on RLWE assumption. Cryptology ePrint Archive, Report 2019/665 (2019)

    Google Scholar 

  18. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 467–486. Springer, Cham (2018).https://doi.org/10.1007/978-3-319-93638-3_27

    Chapter  Google Scholar 

  19. Ding, J., Xie, X., Lin, X.: A Simple provably secure key exchange scheme based on the learning with errors problem. Cryptology ePrint Archive, Report 2019/688 (2012)

    Google Scholar 

  20. Fluhrer, S.R.: Cryptanalysis of ring-LWE based key exchange with key share reuse. Cryptology ePrint Archive, Report 2016/085 (2016)

    Google Scholar 

  21. Greuet, A., Montoya, S., Renault, G.: Attack on LAC key exchange in misuse situation. Cryptology ePrint Archive, Report 2020/063 (2020)

    Google Scholar 

  22. Günther, F., Towa, P.: KEMTLS with delayed forward identity protection in (almost) a single round trip. Cryptology ePrint Archive, Report 2021/725 (2021)

    Google Scholar 

  23. Hashimoto, K., Katsumata, S., Kwiatkowski, K., Prest, T.: An efficient and generic construction for signal’s handshake (X3DH): post-quantum, state leakage secure, and deniable. Cryptology ePrint Archive, Report 2021/616 (2021)

    Google Scholar 

  24. Huguenin-Dumittan, L., Vaudenay, S.: Classical misuse attacks on NIST round 2 PQC. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 208–227. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-57808-4_11

    Chapter  Google Scholar 

  25. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005).https://doi.org/10.1007/11535218_33

    Chapter  Google Scholar 

  26. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010).https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  27. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-key-distribution systems. IEICE Trans. (1976–1990)69(2), 99–106 (1986)

    Google Scholar 

  28. Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols providing implicit authentication. In: Workshop on Selected Areas in Cryptography (SAC 1995), pp. 22–32. CRC Press (1995)

    Google Scholar 

  29. Menezes, A., Ustaoglu, B.: On reusing ephemeral keys in Diffie-Hellman key agreement protocols. Int. J. Appl. Cryptography2(2), 154–158 (2010)

    Article MathSciNet  Google Scholar 

  30. Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on NewHope with fewer queries. Cryptology ePrint Archive, Report 2020/585 (2020)

    Google Scholar 

  31. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014).https://doi.org/10.1007/978-3-319-11659-4_12

    Chapter MATH  Google Scholar 

  32. Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack on NIST candidate NewHope. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 504–520. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-29962-0_24

    Chapter  Google Scholar 

  33. Qin, Y., Cheng, C., Ding, J.: An efficient key mismatch attack on the NIST third round candidate Kyber. Cryptology ePrint Archive, Report 2019/1343 (2019)

    Google Scholar 

  34. Qin, Y., Cheng, C., Zhang, X., Pan, Y., Hu, L., Ding, J.: A systematic approach and analysis of key mismatch attacks on lattice-based NIST candidate KEMs. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 92–121. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-92068-5_4

    Chapter  Google Scholar 

  35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93. ACM (2005)

    Google Scholar 

  36. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake signatures. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 1461–1480 (2020)

    Google Scholar 

  37. Schwabe, P., Stebila, D., Wiggers, T.: More efficient post-quantum KEMTLS with pre-distributed public keys. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12972, pp. 3–22. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-88418-5_1

    Chapter  Google Scholar 

  38. Seyhan, K., Nguyen, T.N., Akleylek, S., Cengiz, K., Islam, S.H.: Bi-GISIS KE: modified key exchange protocol with reusable keys for IoT security. J. Inf. Secur. Appl.58, 102788 (2021)

    Google Scholar 

  39. Veitch, S.: Improved key reuse attack implementation.https://git.uwaterloo.ca/ssveitch/improved-key-reuse. Accessed May 2021

  40. Wang, Q., Wang, D., Cheng, C., He, D.: Quantum2FA: Efficient Quantum-Resistant Two-Factor Authentication Scheme for Mobile Devices. IEEE Trans. Dependable Secure Comput. (Early Access) (2021).https://ieeexplore.ieee.org/document/9623421

  41. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015).https://doi.org/10.1007/978-3-662-46803-6_24

    Chapter  Google Scholar 

  42. Zhang, X., Cheng, C., Ding, R.: Small leaks sink a great ship: an evaluation of key reuse resilience of PQC third round finalist NTRU-HRSS. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds.) ICICS 2021. LNCS, vol. 12919, pp. 283–300. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-88052-1_17

    Chapter  Google Scholar 

Download references

Acknowledgments

The research in this paper was partially supported by the National Natural Science Foundation of China (NSFC) under Grant no 62172374. Y. Pan was supported by the National Key Research and Development Program of China (No. 2018YFA0704705) and NSFC (No. 62032009). Y. Q and J. D would like to thank CCB Fintech Co. Ltd for partially sponsoring the work (No. KT2000040). Nina Bindel was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant RGPIN-2016-05146, NSERC Discovery Accelerator Supplement grant RGPIN-2016-05146, and Contract 2L 165-180499/001/sv, “PQC Analysis”, funded by Public Works and Government Services Canada.

Author information

Authors and Affiliations

  1. China University of Geosciences, Wuhan, 430074, China

    Yue Qin, Ruoyu Ding & Chi Cheng

  2. State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, 100878, China

    Yue Qin, Ruoyu Ding & Chi Cheng

  3. SandboxAQ, Palo Alto, CA, USA

    Nina Bindel

  4. Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

    Yanbin Pan

  5. Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

    Jintai Ding

  6. Ding Lab, Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing, China

    Yue Qin & Jintai Ding

Authors
  1. Yue Qin

    You can also search for this author inPubMed Google Scholar

  2. Ruoyu Ding

    You can also search for this author inPubMed Google Scholar

  3. Chi Cheng

    You can also search for this author inPubMed Google Scholar

  4. Nina Bindel

    You can also search for this author inPubMed Google Scholar

  5. Yanbin Pan

    You can also search for this author inPubMed Google Scholar

  6. Jintai Ding

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toChi Cheng orNina Bindel.

Editor information

Editors and Affiliations

  1. Rutgers University, Newark, NJ, USA

    Vijayalakshmi Atluri

  2. Hamad Bin Khalifa University, Doha, Qatar

    Roberto Di Pietro

  3. Technical University of Denmark, Kongens Lyngby, Denmark

    Christian D. Jensen

  4. Technical University of Denmark, Kongens Lyngby, Denmark

    Weizhi Meng

A Parameter Choices in the Improved Attack Against DXL-KE

A Parameter Choices in the Improved Attack Against DXL-KE

1.1A.1 The Choices of k for Absolute Value Recovery

Recall that\({{\textbf {K}}}_B = {\textbf {P}}_A {\textbf {s}}_B+ 2{\textbf {g}}_B = k{\textbf {s}}_B+ 2{\textbf {g}}_B \). Hence,\( |k{\textbf {s}}_B[i]| - |2{\textbf {g}}_B[i]| \le |{\textbf {K}}_B[i]| \le |k{\textbf {s}}_B[i]| + |2{\textbf {g}}_B[i]|. \) Moreover, if\(|{\textbf {K}}_B[i]| < \left\lfloor \frac{q}{4}\right\rfloor \) the corresponding signal is 0, and the signal is 1 if\(\left\lceil \frac{q}{4}\right\rceil< |{\textbf {K}}_B[i]| < \left\lfloor \frac{3q}{4}\right\rfloor \). Thus, a signal is zero in a stable region if

$$\begin{aligned} |k{\textbf {s}}_B[i]| + |2{\textbf {g}}_B[i]|< \left\lfloor \frac{q}{4}\right\rfloor \Leftrightarrow k <\frac{ \left\lfloor \frac{q}{4}\right\rfloor - |2{\textbf {g}}_B[i]| }{|{\textbf {s}}_B[i]| }, \end{aligned}$$
(7)

and 1 in a stable region if

$$\begin{aligned} \frac{ \left\lceil \frac{q}{4}\right\rceil + |2{\textbf {g}}_B[i]| }{|{\textbf {s}}_B[i]| }< k <\frac{ \left\lfloor \frac{3q}{4}\right\rfloor - |2{\textbf {g}}_B[i]| }{|{\textbf {s}}_B[i]| }. \end{aligned}$$
(8)

We start with the first targeted signal (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1). When\(|{\textbf {s}}_B[i]| \leqslant 7\), the corresponding signal\(\omega _B[i]\) is in the stable region of 0, otherwise\(\omega _B[i]\) is in the stable region of 1. Thus, according to Equation (7), we need to choose\(k_1\) such that\( k_1 < (\left\lfloor \frac{q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|) / 7.\) When\(7<|{\textbf {s}}_B[i]| \leqslant 15\), based on Equation (8), we need to choose\(k_1\) such that\((\left\lceil \frac{q}{4}\right\rceil + |2{\textbf {g}}_B[i]|) / 8< k_1 < ( \left\lfloor \frac{3q}{4}\right\rfloor - |2{\textbf {g}}_B[i]| ) / 15.\) Combing the above two results, we have

$$\begin{aligned} \begin{aligned} \frac{\left\lceil \frac{q}{4}\right\rceil + |2{\textbf {g}}_B[i]|}{8}< k_1 < \frac{ \left\lfloor \frac{q}{4} \right\rfloor - |2{\textbf {g}}_B[i]|}{7}. \end{aligned} \end{aligned}$$
(9)

For\(k_2\), the corresponding targeted signal is (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,  0) as\(|{\textbf {s}}_B[i]|\) increases from 0 to 15. From our observation, we know that the signal is always 0 when\(|{\textbf {s}}_B[i]|\) increases from 0 to 3, and when\(|{\textbf {s}}_B[i]| \geqslant 12\). Based on Equation (7), we have\((\left\lceil \frac{3q}{4}\right\rceil + |2{\textbf {g}}_B[i]|) / 12< k_2 < (\left\lfloor \frac{q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|) / 3. \) When\(4 \leqslant |{\textbf {s}}_B[i]| \leqslant 11\), the signal changes to 1. Thus, by Equation (8),\((\left\lceil \frac{q}{4}\right\rceil + |2{\textbf {g}}_B[i]|) / 4< k_2 < (\left\lfloor \frac{3q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|) / 11.\) Then we conclude that

$$\begin{aligned} \frac{\left\lceil \frac{q}{4}\right\rceil + |2{\textbf {g}}_B[i]|}{4}< k_2 < \frac{\left\lfloor \frac{3q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|}{11}. \end{aligned}$$
(10)
Table 4. Signals\(\omega _{B_j}[i]\) for\(k_j\) and\(s[i]=|{\textbf {s}}_B[i] + {\textbf {s}}_B[i+1] |\) in DXL-KE with\(j+1,2,3,4,5\) and\(i=0,...,n-1\)

For\(k_3\), when\(|{\textbf {s}}_B[i]|\) increases from 0 to 15, the corresponding targeted signal is (0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1). Similarly to before, we conclude that

$$\begin{aligned} \left\lfloor \frac{q}{4}\right\rfloor - \frac{\left\lfloor \frac{q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|}{14}< k_3 < \left\lfloor \frac{q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|. \end{aligned}$$
(11)

For parameters of DXL-KE, this means concretely\(k_1 \in (515.88, 580.86)\),\(k_2 \in (1031.75, 1114.36)\),\(k_3 \in (3805.57, 4066)\), and\(k_4 \in (7921.93, 8464.07)\). Consequently, we select\(k_1=550\),\(k_2=1,050\),\(k_3=4,000\), and\(k_4=8,192\).

1.2B.2 The Choices of k in Sign Recovery

In Sect. 4, we follow a similar way as previously to determine the ranges of\(k_1,k_2,k_3,k_4,k_5\). The corresponding targeted signals and chosen\(k_j\)’s are given in Table 4. We choose them depending on the following requirements for\(k_j\):

$$\begin{aligned} \begin{aligned} \frac{\left\lceil \frac{q}{4}\right\rceil + |2{\textbf {g}}_B[i]|}{16}&< k_1< \frac{ \left\lfloor \frac{q}{4} \right\rfloor - |2{\textbf {g}}_B[i]|}{15}, \\ \frac{\left\lceil \frac{q}{4}\right\rceil + |2{\textbf {g}}_B[i]|}{8}&< k_2< \frac{\left\lfloor \frac{3q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|}{23}, \\ \frac{\left\lceil \frac{q}{4}\right\rceil + |2{\textbf {g}}_B[i]|}{4}&< k_3< \left\lfloor \frac{q}{16}\right\rfloor + \frac{\left\lfloor \frac{q}{16}\right\rfloor - |2{\textbf {g}}_B[i]|}{27}, \\ \left\lfloor \frac{q}{4}\right\rfloor - \frac{\left\lfloor \frac{q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|}{30}&< k_4< \left\lfloor \frac{q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|,\\ \left\lfloor \frac{q}{2} \right\rceil - \frac{\left\lfloor \frac{q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|}{30}&< k_5 < \left\lfloor \frac{q}{2}\right\rceil + \frac{\left\lfloor \frac{q}{4}\right\rfloor - |2{\textbf {g}}_B[i]|}{30}. \end{aligned} \end{aligned}$$
(12)

Rights and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, Y., Ding, R., Cheng, C., Bindel, N., Pan, Y., Ding, J. (2022). Light the Signal: Optimization of Signal Leakage Attacks Against LWE-Based Key Exchange. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds) Computer Security – ESORICS 2022. ESORICS 2022. Lecture Notes in Computer Science, vol 13554. Springer, Cham. https://doi.org/10.1007/978-3-031-17140-6_33

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp