Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Investigating the Effectiveness of Visual Learning Analytics in Active Video Watching

  • Conference paper
  • First Online:

Abstract

Video-based Learning (VBL) is a popular form of online learning, which may lead to passive video watching and low learning outcomes. Besides potential low engagement, VBL often provides very limited feedback on student’s progress. As a way to overcome these challenges, we present student-facing visual learning analytics (VLA) designed for the AVW-Space VBL platform. Using a quasi-experimental design, we compared data collected in the same first-year university course in 2020 (control group, 294 participants using the original version of AVW-Space) to the 2021 data when 351 participants used the enhanced version of AVW-Space (experimental group). We analysed various measures of engagement (number of watched videos, comments, etc.) and learning (pre/post-study knowledge scores). The findings show that VLA encourage constructive behaviour and increase learning. This research contributes to using student-facing VLA in VBL platforms to boost engagement and learning.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Scagnoli, N.I., Choo, J., Tian, J.: Students’ insights on the use of video lectures in online classes. Br. J. Edu. Technol.50, 399–414 (2019)

    Article  Google Scholar 

  2. Yousef, A.M.F., Chatti, M.A., Schroeder, U.: The state of video-based learning: a review and future perspectives. Adv. Life Sci.6, 122–135 (2014)

    Google Scholar 

  3. Chatti, M.A., et al.: Video annotation and analytics in CourseMapper. Smart Learn. Environ.3, 10 (2016)

    Article  Google Scholar 

  4. Cummins, S., Beresford, A.R., Rice, A.: Investigating engagement with in-video quiz questions in a programming course. IEEE Trans. Learn. Technol.9, 57–66 (2016)

    Article  Google Scholar 

  5. Giannakos, M.N., Sampson, D.G., Kidziński, Ł: Introduction to smart learning analytics: foundations and developments in video-based learning. Smart Learn. Environ.3(1), 1–9 (2016).https://doi.org/10.1186/s40561-016-0034-2

    Article  Google Scholar 

  6. Wang, M., Peng, J., Cheng, B., Zhou, H., Liu, J.: Knowledge visualization for self-regulated learning. J. Educ. Technol. Soc.14, 28–42 (2011)

    Google Scholar 

  7. Hooshyar, D., Pedaste, M., Saks, K., Leijen, Ä., Bardone, E., Wang, M.: Open learner models in supporting self-regulated learning in higher education: a systematic literature review. Comput. Educ.154, 103878 (2020)

    Article  Google Scholar 

  8. Bodily, R., et al.: Open learner models and learning analytics dashboards: a systematic review. In: Proceedings of 8th International Conference on Learning Analytics and Knowledge, pp. 41–50 (2018)

    Google Scholar 

  9. Bull, S., Kay, J.: Open learner models. In: Advances in Intelligent Tutoring Systems, pp. 301–322 (2010).https://doi.org/10.1007/978-3-642-14363-2_15

  10. Aguilar, S., Karabenick, S.A., Teasley, S.D., Baek, C.: Associations between learning analytics dashboard exposure and motivation and self-regulated learning. Comput. Educ.162, 104085 (2021).https://doi.org/10.1016/j.compedu.2020.104085

    Article  Google Scholar 

  11. Aguilar, S., Lonn, S., Teasley, S.D.: Perceptions and use of an early warning system during a higher education transition program. In: Proceedings of Learning Analytics and Knowledge, pp. 113–117 (2014)

    Google Scholar 

  12. Ruiz, J.S., Díaz, H.J.P., Ruipérez-Valiente, J.A., Muñoz-Merino, P.J., Kloos, C.D.: Towards the development of a learning analytics extension in open EdX. In: Proceedings of 2nd International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 299–306 (2014)

    Google Scholar 

  13. Mitrovic, A., Dimitrova, V., Weerasinghe, A., Lau, L.: Reflective experiential learning: using active video watching for soft skills training. In: International Conference on Computers in Education, pp. 192–201 (2016)

    Google Scholar 

  14. Mitrovic, A., Dimitrova, V., Lau, L., Weerasinghe, A., Mathews, M.: Supporting constructive video-based learning: requirements elicitation from exploratory studies. In: André, E., Baker, R., Hu, X., Rodrigo, M.M.T., du Boulay, B. (eds.) AIED 2017. LNCS (LNAI), vol. 10331, pp. 224–237. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-61425-0_19

    Chapter  Google Scholar 

  15. Mohammadhassan, N., Mitrovic, A., Neshatian, K.: Investigating the effect of nudges for improving comment quality in active video watching. Comput. Educ.176, 104340 (2022)

    Article  Google Scholar 

  16. Mitrovic, A., Gordon, M., Piotrkowicz, A., Dimitrova, V.: Investigating the effect of adding nudges to increase engagement in active video watching. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11625, pp. 320–332. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-23204-7_27

    Chapter  Google Scholar 

  17. Matcha, W., Uzir, N.A., Gašević, D., Pardo, A.: A systematic review of empirical studies on learning analytics dashboards: a self-regulated learning perspective. IEEE Trans. Learn. Technol.13, 226–245 (2020)

    Article  Google Scholar 

  18. Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., Kirschner, P.A.: Linking learning behavior analytics and learning science concepts: designing a learning analytics dashboard for feedback to support learning regulation. Comput. Hum. Behav.107, 105512 (2020)

    Article  Google Scholar 

  19. Chou, C.-Y., et al.: Open student models of core competencies at the curriculum level: using learning analytics for student reflection. IEEE Trans. Emerg. Top. Comput.5, 32–44 (2017)

    Article  Google Scholar 

  20. Majumdar, R., Akçapınar, A., Akçapınar, G., Flanagan, B., Ogata, H.: LAView: learning analytics dashboard towards evidence-based education. In: Companion Proceedings of 9th International Conference on Learning Analytics & Knowledge, pp. 68–73 (2019)

    Google Scholar 

  21. Broos, T., Peeters, L., Verbert, K., Van Soom, C., Langie, G., De Laet, T.: Dashboard for actionable feedback on learning skills: scalability and usefulness. In: Zaphiris, P., Ioannou, A. (eds.) LCT 2017. LNCS, vol. 10296, pp. 229–241. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-58515-4_18

    Chapter  Google Scholar 

  22. Ez-zaouia, M., Tabard, A., Lavoué, E.: EMODASH: a dashboard supporting retrospective awareness of emotions in online learning. Human-Comput. Stud.139, 102411 (2020)

    Article  Google Scholar 

  23. Ruiz, S., Charleer, S., Urretavizcaya, M., Klerkx, J., Fernández-Castro, I., Duval, E.: Supporting learning by considering emotions: tracking and visualization a case study. In: International Conference on Learning Analytics & Knowledge, pp. 254–263 (2016)

    Google Scholar 

  24. Guerra, J., Hosseini, R., Somyurek, S., Brusilovsky, P.: An intelligent interface for learning content: combining an open learner model and social comparison to support self-regulated learning and engagement. In: Intelligent User Interfaces, pp. 152–163 (2016)

    Google Scholar 

  25. Corrin, L., de Barba, P.: Exploring students’ interpretation of feedback delivered through learning analytics dashboards. In: Rhetoric and Reality: Critical Perspectives on Educational Technology. Proceedings ASCILITE, pp. 629–633 (2014)

    Google Scholar 

  26. Lim, L., Dawson, S., Joksimovic, S., Gašević, D.: Exploring students’ sensemaking of learning analytics dashboards: does frame of reference make a difference? In: International Conference on Learning Analytics & Knowledge, pp. 250–259 (2019)

    Google Scholar 

  27. Lonn, S., Aguilar, S., Teasley, S.D.: Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Comput. Hum. Behav.47, 90–97 (2015)

    Article  Google Scholar 

  28. Srivastava, N., Velloso, E., Lodge, J.M., Erfani, S., Bailey, J.: Continuous evaluation of video lectures from real-time difficulty self-report. In: Proceedings of Human Factors in Computing Systems, pp. 1–12 (2019)

    Google Scholar 

  29. Yoon, M., Hill, J., Kim, D.: Designing supports for promoting self-regulated learning in the flipped classroom. J. Comput. High. Educ.33(2), 398–418 (2021).https://doi.org/10.1007/s12528-021-09269-z

    Article  Google Scholar 

  30. Mohammadhassan, N., Mitrovic, A., Neshatian, K., Dunn, J.: Automatic assessment of comment quality in active video watching. In: International Conference on Computers in Education, pp. 1–10 (2020)

    Google Scholar 

  31. Taskin, Y., Hecking, T., Hoppe, H.U., Dimitrova, V., Mitrovic, A.: Characterizing comment types and levels of engagement in video-based learning as a basis for adaptive nudging. In: Scheffel, M., Broisin, J., Pammer-Schindler, V., Ioannou, A., Schneider, J. (eds.) EC-TEL 2019. LNCS, vol. 11722, pp. 362–376. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-29736-7_27

    Chapter  Google Scholar 

  32. Chi, M.T.H., Wylie, R.: The ICAP framework: linking cognitive engagement to active learning outcomes. Educ. Psychol.49, 219–243 (2014)

    Article  Google Scholar 

  33. Mohammadhassan, N., Mitrovic, A.: Discovering differences in learning behaviours during active video watching using epistemic network analysis. In: Wasson, B., Zörgő, S. (eds.) Advances in Quantitative Ethnography. ICQE 2021. Communications in Computer and Information Science, vol. 1522. Springer, Cham (2022).https://doi.org/10.1007/978-3-030-93859-8_24

  34. Dimitrova, V., Mitrovic, A., Piotrkowicz, A., Lau, L., Weerasinghe, A.: Using learning analytics to devise interactive personalised nudges for active video watching. In: User Modeling, Adaptation and Personalization, pp. 22–31 (2019)

    Google Scholar 

  35. Hu, L., Bentler, P.M.: Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Model.6, 1–55 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Canterbury, Christchurch, New Zealand

    Negar Mohammadhassan & Antonija Mitrovic

Authors
  1. Negar Mohammadhassan

    You can also search for this author inPubMed Google Scholar

  2. Antonija Mitrovic

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toNegar Mohammadhassan orAntonija Mitrovic.

Editor information

Editors and Affiliations

  1. Ateneo De Manila University, Quezon, Philippines

    Maria Mercedes Rodrigo

  2. Department of Computer Science, North Carolina State University, Raleigh, NC, USA

    Noburu Matsuda

  3. Durham University, Durham, UK

    Alexandra I. Cristea

  4. University of Leeds, Leeds, UK

    Vania Dimitrova

Rights and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammadhassan, N., Mitrovic, A. (2022). Investigating the Effectiveness of Visual Learning Analytics in Active Video Watching. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2022. Lecture Notes in Computer Science, vol 13355. Springer, Cham. https://doi.org/10.1007/978-3-031-11644-5_11

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp