- Mojtaba Nayyeri15,19,
- Sahar Vahdati16,
- Md Tansen Khan15,
- Mirza Mohtashim Alam16,
- Lisa Wenige16,
- Andreas Behrend17 &
- …
- Jens Lehmann15,18
Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 13261))
Included in the following conference series:
2118Accesses
Abstract
Many knowledge graphs (KG) contain spatial and temporal information. Most KG embedding models follow triple-based representation and often neglect the simultaneous consideration of the spatial and temporal aspects. Encoding such higher dimensional knowledge necessitates the consideration of true algebraic and geometric aspects. Hypercomplex algebra provides the foundation of a well defined mathematical system among which the Dihedron algebra with its rich framework is suitable to handle multidimensional knowledge. In this paper, we propose an embedding model that uses Dihedron algebra for learning such spatial and temporal aspects. The evaluation results show that our model performs significantly better than other adapted models.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 9151
- Price includes VAT (Japan)
- Softcover Book
- JPY 11439
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balažević, I., Allen, C., Hospedales, T.M.: Tucker: Tensor factorization for knowledge graph completion. arXiv preprint (2019).arXiv:1901.09590
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Neural Information Processing Systems (NIPS), pp. 1–9 (2013)
Chami, I., Wolf, A., Juan, D.-C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyperbolic knowledge graph embeddings. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6901–6914 (2020)
Dasgupta, S.S., Ray, S.N., Talukdar, P.: Hyte: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2001–2011 (2018)
Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. arXiv preprint (2018).arXiv:1809.03202
Hobbs, J., Blythe, J., Chalupsky, H., Russ, T.A.: A survey of geospatial resources, representation and reasoning. Public Distribution of the University of Southern California (2006)
Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (vol. 1: Long Papers), pp. 687–696 (2015)
Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. (2021)
Jin, W., Zhang, C., Szekely, P., Ren, X.: Recurrent event network for reasoning over temporal knowledge graphs. arXiv preprint (2019).arXiv:1904.05530
Kingma, D.P., Adam, J.Ba.: A method for stochastic optimization. arXiv preprint (2014).arXiv:1412.6980
Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowledge base completion. arXiv preprint (2020).arXiv:2004.04926
Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: International Conference on Machine Learning, pp. 2863–2872. PMLR (2018)
Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Companion Proceedings of the Web Conference 2018, pp. 1771–1776 (2018)
Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia, vol. 6, pp. 167–195 (2015, IOS Press)
Leidner, J.L.: A survey of textual data & geospatial technology. In: Werner, M. (ed.) Handbook of Big Geospatial Data, pp. 429–457. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-55462-0_16
Li, Z., Liu, H., Zhang, Z., Liu, T., Xiong, N.N.: Learning knowledge graph embedding with heterogeneous relation attention networks. IEEE Trans. Neural Netw. Learn. Syst. (2021)
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)
Ma, Y., Tresp, V., Daxberger, E.A.: Embedding models for episodic knowledge graphs. J. Web Semant.59, 100490 (2019)
Mahdisoltani, F., Biega, J., Suchanek, F.: Yago3: a knowledge base from multilingual wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research. CIDR Conference (2014)
Nayyeri, M., Vahdati, S., Aykul, C., Lehmann, J.: 5* knowledge graph embeddings with projective transformations. arXiv preprint (2020).arXiv:2006.04986
Qian, T., Liu, B., Nguyen, Q.V.H., Yin, H.: Spatiotemporal representation learning for translation-based poi recommendation. ACM Trans. Inf. Syst. (TOIS)37(2), 1–24 (2019)
Rotman, J.J.: Advanced Modern Algebra, vol. 114. American Mathematical Soc, New York (2010)
Sun, Z., Deng, Z.-H., Nie, J.-Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. arXiv preprint (2019).arXiv:1902.10197
Pellissier Tanon, T., Weikum, G., Suchanek, F.: YAGO 4: a reason-able knowledge base. In: Harth, A. (ed.) ESWC 2020. LNCS, vol. 12123, pp. 583–596. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-49461-2_34
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM57(10), 78–85 (2014)
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)
Wildberger, N.J.: The geometry of the dihedrons (and quaternions).https://www.youtube.com/watch?v=qcmH0iKRF2w&t=1569s. Accessed 11 June 2021
Xu , C., Li, R.: Relation embedding with dihedral group in knowledge graph. arXiv preprint (2019).arXiv:1906.00687
Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: A time-aware knowledge graph embedding via temporal rotation. arXiv preprint (2020).arXiv:2010.01029
Yang, B., Yih, W.-T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint (2014).arXiv:1412.6575
Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. arXiv preprint (2019).arXiv:1904.10281
Zhao, L., Deng, H., Qiu, L., Li, S., Hou, Z., Sun, H., Chen, Y.: Urban multi-source spatio-temporal data analysis aware knowledge graph embedding. Symmetry12(2), 199 (2020)
Acknowledgement
We acknowledge the support of the following projects: SPEAKER (BMWi FKZ 01MK20011A), JOSEPH (Fraunhofer Zukunftsstiftung), the EU projects Cleopatra (GA 812997), PLATOON(GA 872592), TAILOR(EU GA 952215), CALLISTO(101004152), the BMBF projects MLwin(01IS18050) and the BMBF excellence clusters ML2R (BmBF FKZ 01 15 18038 A/B/C) and ScaDS.AI (IS18026A-F).
Author information
Authors and Affiliations
University of Bonn, Bonn, Germany
Mojtaba Nayyeri, Md Tansen Khan & Jens Lehmann
Institute for Applied Informatics (InfAI), Dresden, Germany
Sahar Vahdati, Mirza Mohtashim Alam & Lisa Wenige
Institute for Telecommunications (INT), TH Köln, Cologne, Germany
Andreas Behrend
Fraunhofer IAIS, Dresden, Germany
Jens Lehmann
University of Stuttgart, Stuttgart, Germany
Mojtaba Nayyeri
- Mojtaba Nayyeri
You can also search for this author inPubMed Google Scholar
- Sahar Vahdati
You can also search for this author inPubMed Google Scholar
- Md Tansen Khan
You can also search for this author inPubMed Google Scholar
- Mirza Mohtashim Alam
You can also search for this author inPubMed Google Scholar
- Lisa Wenige
You can also search for this author inPubMed Google Scholar
- Andreas Behrend
You can also search for this author inPubMed Google Scholar
- Jens Lehmann
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toMd Tansen Khan.
Editor information
Editors and Affiliations
University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands
Paul Groth
Universidad Simón Bolívar, Leibniz Information Centre for Science and Technology, Hannover, Niedersachsen, Germany
Maria-Esther Vidal
Institut Polytechnique de Paris "DIG", Télécom ParisTech, Palaiseau, France
Fabian Suchanek
University of Southern California, Marina del Rey, CA, USA
Pedro Szekley
IBM Research - Thomas J. Watson Research, Yorktown Heights, NY, USA
Pavan Kapanipathi
LaSIGE, Fac de Ciencias,Edif C6, Pis0 3, Universidade de Lisboa, Lisbon, Portugal
Catia Pesquita
University of Nantes, Nantes, France
Hala Skaf-Molli
Aalto University, Espoo, Finland
Minna Tamper
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nayyeri, M.et al. (2022). Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion. In: Groth, P.,et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_15
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-031-06980-2
Online ISBN:978-3-031-06981-9
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative