Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

CAD System for Parkinson’s Disease with Penalization of Non-significant or High-Variability Input Data Sources

  • Conference paper
  • First Online:

Abstract

In the last decade, the progressive development of new machine learning schemas in combination with novel biomarkers have led us to more accurate models to diagnose and predict the evolution of neurological disorders like Parkinson’s Disease (PD). Though some of these previous work have attempted to combine multiple input data sources, many studies are critical of their lack of robustness when combining several input sources that with a high variability and/or not statistically significant. In order to minimize this problem, we have develop a Computer-Aided-Diagnosis (CAD) system for PD able to combine multiple input data sources underestimating those data types with poor classification rates and high variability. This model has been evaluated using FP-CIT SPECT and MRI images from healthy control subjects and patients with Parkinson’s Disease. As shown by our results, the cross-validation model proposed here does not only preserves the performance of our CAD system (93.8% of balanced accuracy) but also minimizes its variability even despite the input data sources poorly statistically significant.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    Patients with parkinsonism labeled as SWEDD (Scan Without Evidence of Dopaminergic Deficit).

  2. 2.
  3. 3.
  4. 4.

    Arithmetic mean between sensitivity and specificity.

References

  1. Augimeri, A., et al.: CADA—computer-aided DaTSCAN analysis. EJNMMI Phys.3(1), 1–13 (2016).https://doi.org/10.1186/s40658-016-0140-9

    Article  Google Scholar 

  2. Castillo-Barnes, D., et al.: Robust ensemble classification methodology for I123-Ioflupane SPECT images and multiple heterogeneous biomarkers in the diagnosis of Parkinson’s disease. Front. Neuroinform.12, 53 (2018).https://doi.org/10.3389/fninf.2018.00053

  3. Castillo-Barnes, D., et al.: Comparison between affine and non-affine transformations applied to I\(^{[123]}\)-FP-CIT SPECT images used for Parkinson’s disease diagnosis. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019, Part I. LNCS, vol. 11486, pp. 379–388. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-19591-5_39

    Chapter  Google Scholar 

  4. Castillo-Barnes, D., et al.: Morphological characterization of functional brain imaging by isosurface analysis in Parkinson’s disease. Int. J. Neural Syst.30(09), 2050044 (2020).https://doi.org/10.1142/s0129065720500446

  5. Cigdem, O., Beheshti, I., Demirel, H.: Effects of different covariates and contrasts on classification of Parkinson’s disease using structural MRI. Comput. Biol. Med.99, 173–181 (2018).https://doi.org/10.1016/j.compbiomed.2018.05.006

    Article PubMed  Google Scholar 

  6. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing410, 237–270 (2020).https://doi.org/10.1016/j.neucom.2020.05.078

    Article  Google Scholar 

  7. Hawkins, D.M.: The problem of overfitting. J. Chem. Inf. Comput. Sci.44(1), 1–12 (2003).https://doi.org/10.1021/ci0342472

    Article CAS  Google Scholar 

  8. Hustad, E., Skogholt, A.H., Hveem, K., Aasly, J.O.: The accuracy of the clinical diagnosis of Parkinson disease. The HUNT study. J. Neurol.265(9), 2120–2124 (2018).https://doi.org/10.1007/s00415-018-8969-6

    Article PubMed PubMed Central  Google Scholar 

  9. Iarkov, A., Barreto, G.E., Grizzell, J.A., Echeverria, V.: Strategies for the treatment of Parkinson’s disease: beyond dopamine. Front. Aging Neurosci.12, 4 (2020).https://doi.org/10.3389/fnagi.2020.00004

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, Quebec, Canada, vol. 2, pp. 1137–1145 (August 1995)

    Google Scholar 

  11. Martins, R., et al.: Automatic classification of idiopathic Parkinson’s disease and atypical parkinsonian syndromes combining [11c]raclopride PET uptake and MRI grey matter morphometry. J. Neural Eng.18(4), 046037 (2021).https://doi.org/10.1088/1741-2552/abf772

  12. Nicastro, N., et al.: Classification of degenerative parkinsonism subtypes by support-vector-machine analysis and striatal123I-FP-CIT indices. J. Neurol.266(7), 1771–1781 (2019).https://doi.org/10.1007/s00415-019-09330-z

    Article PubMed PubMed Central  Google Scholar 

  13. Ramírez, J., et al.: Ensemble of random forests one vs. rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares. J. Neurosci. Methods302, 47–57 (2018).https://doi.org/10.1016/j.jneumeth.2017.12.005

    Article PubMed  Google Scholar 

  14. Rokach, L.: Pattern Classification Using Ensemble Methods. World Scientific Publishing Company, Singapore (2009)

    Book  Google Scholar 

  15. Salas-Gonzalez, D., et al.: Building a FP-CIT SPECT brain template using a posterization approach. Neuroinformatics13(4), 391–402 (2015).https://doi.org/10.1007/s12021-015-9262-9

    Article CAS PubMed  Google Scholar 

  16. Salas-Gonzalez, D., et al.: Linear intensity normalization of FP-CIT SPECT brain images using the\(\alpha \)-stable distribution. NeuroImage65, 449–455 (2013).https://doi.org/10.1016/j.neuroimage.2012.10.005

    Article PubMed  Google Scholar 

  17. Salvatore, C., et al.: Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy. J. Neurosci. Methods222, 230–237 (2014).https://doi.org/10.1016/j.jneumeth.2013.11.016

    Article CAS PubMed  Google Scholar 

  18. Savica, R., et al.: Time trends in the incidence of Parkinson disease. JAMA Neurol.73(8), 981 (2016).https://doi.org/10.1001/jamaneurol.2016.0947

    Article PubMed PubMed Central  Google Scholar 

  19. Schoölkopf, B.: Learning with Kernels - Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  20. Segovia, F., et al.: Multivariate analysis of 18f-DMFP PET data to assist the diagnosis of parkinsonism. Front. Neuroinform.11, 23 (2017).https://doi.org/10.3389/fninf.2017.00023

    Article PubMed PubMed Central  Google Scholar 

  21. Shaw, R.G., Mitchell-Olds, T.: Anova for unbalanced data: an overview. Ecology74(6), 1638–1645 (1993).https://doi.org/10.2307/1939922

    Article  Google Scholar 

  22. Solana-Lavalle, G., Rosas-Romero, R.: Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson’s disease. Comput. Methods Programs Biomed.198, 105793 (2021).https://doi.org/10.1016/j.cmpb.2020.105793

  23. Vlaar, A.M., et al.: Diagnostic value of 123i-ioflupane and 123i-iodobenzamide SPECT scans in 248 patients with parkinsonian syndromes. Eur. Neurol.59(5), 258–266 (2008).https://doi.org/10.1159/000115640

    Article PubMed  Google Scholar 

  24. Wingate, J., Kollia, I., Bidaut, L., Kollias, S.: Unified deep learning approach for prediction of Parkinson’s disease. IET Image Process.14(10), 1980–1989 (2020).https://doi.org/10.1049/iet-ipr.2019.1526

    Article  Google Scholar 

  25. Wold, S., Ruhe, A., Wold, H., W. J. Dunn, I.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput.5(3), 735–743 (1984).https://doi.org/10.1137/0905052

  26. Zhang, Y.D., et al.: Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Inf. Fusion64, 149–187 (2020).https://doi.org/10.1016/j.inffus.2020.07.006

    Article PubMed PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the MCIN/ AEI/10.13039/501100011033/ and FEDER “Una manera de hacer Europa”under the RTI2018-098913-B100 project; by the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía) and FEDER under CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects; and by the Ministerio de Universidades under the FPU18/04902 grant given to C. Jimenez-Mesa and the Margarita-Salas grant to J.E. Arco.

Author information

Authors and Affiliations

  1. Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071, Granada, Spain

    Diego Castillo-Barnes, J. Merino-Chica, R. Garcia-Diaz, C. Jimenez-Mesa, J. Ramírez & J. M. Górriz

  2. Department of Communications Engineering, University of Malaga, Blvr. Louis Pasteur 35, 29004, Malaga, Spain

    Juan E. Arco

Authors
  1. Diego Castillo-Barnes

    You can also search for this author inPubMed Google Scholar

  2. J. Merino-Chica

    You can also search for this author inPubMed Google Scholar

  3. R. Garcia-Diaz

    You can also search for this author inPubMed Google Scholar

  4. C. Jimenez-Mesa

    You can also search for this author inPubMed Google Scholar

  5. Juan E. Arco

    You can also search for this author inPubMed Google Scholar

  6. J. Ramírez

    You can also search for this author inPubMed Google Scholar

  7. J. M. Górriz

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toDiego Castillo-Barnes.

Editor information

Editors and Affiliations

  1. Universidad Politécnica de Cartagena, Cartagena, Spain

    José Manuel Ferrández Vicente

  2. Universidad Nacional de Educación a Distancia, Madrid, Spain

    José Ramón Álvarez-Sánchez

  3. Universidad Nacional de Educación a Distancia, Madrid, Spain

    Félix de la Paz López

  4. Ohio State University, Columbus, OH, USA

    Hojjat Adeli

Rights and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castillo-Barnes, D.et al. (2022). CAD System for Parkinson’s Disease with Penalization of Non-significant or High-Variability Input Data Sources. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_3

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp