Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 13330))
Included in the following conference series:
1991Accesses
Abstract
This study investigated how environmental boundaries and road regularity influence people navigating through Virtual Reality (VR) and constructing cognitive maps. Thirty-six younger adults participated in the VR experiment, where they navigated in two different roads (a regular road and an irregular road) on three types of environmental boundaries (no boundary, square boundary, and trapezoidal boundary) to learn virtual environments and locate a reward. The results of the experiment showed that environmental boundaries and participants’ spatial ability had significant influences on cognitive map construction. In regular road environments, participants constructed worse cognitive maps when navigating in the trapezoidal boundary than in the square boundary. In addition, the better spatial ability the participants had, the better cognitive map they constructed. These results give insights into researches on how older adults use spatial geometric cues including environmental boundaries and road regularity when navigating.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 12583
- Price includes VAT (Japan)
- Softcover Book
- JPY 15729
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhandari, J., MacNeilage, P., Folmer, E.: Teleportation without spatial disorientation using optical flow cues. Presented at the, Toronto, Ontario, Canada (2018).https://doi.org/10.20380/gi2018.22
Forte, J.L.B., Vela, F.L.G., Rodríguez, P.P.: User experience problems in immersive virtual environments. Presented at the, Donostia Gipuzkoa Spain June 25 (2019).https://doi.org/10.1145/3335595.3336288
Sayyad, E., Sra, M., Hollerer, T.: Walking and teleportation in wide-area virtual reality experiences. Presented at the , Recife/Porto de Galinhas November (2020).https://doi.org/10.1109/ISMAR50242.2020.00088
Wallet, G., Sauzéon, H., Pala, P.A., Larrue, F., Zheng, X., N’Kaoua, B.: Virtual/real transfer of spatial knowledge: benefit from visual fidelity provided in a virtual environment and impact of active navigation. Cyberpsychol. Behav. Soc. Netw.14, 417–423 (2011).https://doi.org/10.1089/cyber.2009.0187
Richardson, A.E., Powers, M.E., Bousquet, L.G.: Video game experience predicts virtual, but not real navigation performance. Comput. Hum. Behav.27, 552–560 (2011).https://doi.org/10.1016/j.chb.2010.10.003
Richardson, A.E., Montello, D.R., Hegarty, M.: Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Mem. Cognit.27, 741–750 (1999).https://doi.org/10.3758/BF03211566
Waller, D., Hunt, E., Knapp, D.: The transfer of spatial knowledge in virtual environment training. Presence: Teleoperators Virtual Environ.7(2), 129-143 (1998).https://doi.org/10.1162/105474698565631
Taube, J.S., Valerio, S., Yoder, R.M.: Is navigation in virtual reality with fMRI really navigation? J. Cogn. Neurosci.25, 1008–1019 (2013).https://doi.org/10.1162/jocn_a_00386
Ekstrom, A.D.: Why vision is important to how we navigate: human spatial navigation and vision. Hippocampus25, 731–735 (2015).https://doi.org/10.1002/hipo.22449
Ekstrom, A.D., Spiers, H.J., Bohbot, V.D., Rosenbaum, R.S.: Human Spatial Navigation. Princeton University Press (2018)
Lorenz, M., Busch, M., Rentzos, L., Tscheligi, M., Klimant, P., Frohlich, P.: I’m There! The influence of virtual reality and mixed reality environments combined with two different navigation methods on presence. Presented at the , Arles, Camargue, Provence, France 2015–3 (2015).https://doi.org/10.1109/VR.2015.7223376
Clemente, M., Rodríguez, A., Rey, B., Alcañiz, M.: Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Syst. Appl.41, 1584–1592 (2014).https://doi.org/10.1016/j.eswa.2013.08.055
Brade, J., Lorenz, M., Busch, M., Hammer, N., Tscheligi, M., Klimant, P.: Being there again – presence in real and virtual environments and its relation to usability and user experience using a mobile navigation task. Int. J. Hum Comput Stud.101, 76–87 (2017).https://doi.org/10.1016/j.ijhcs.2017.01.004
Cliburn, D., Winlock, T., Rilea, S., Van Donsel, M.: Dynamic landmark placement as a navigation aid in virtual worlds. Presented at the , Newport Beach, California (2007).https://doi.org/10.1145/1315184.1315225
Ruddle, R.A.: The effect of trails on first-time and subsequent navigation in a virtual environment. Presented at the , Bonn, Germany (2005).https://doi.org/10.1109/VR.2005.1492761
Chrastil, E.R., Warren, W.H.: Active and passive spatial learning in human navigation: acquisition of survey knowledge. J. Exp. Psychol. Learn. Mem. Cogn.39, 1520–1537 (2013).https://doi.org/10.1037/a0032382
Fabroyir, H., Teng, W.-C.: Navigation in virtual environments using head-mounted displays: Allocentric vs. egocentric behaviors. Comput. Human Behav.80, 331-343 (2018).https://doi.org/10.1016/j.chb.2017.11.033
Walkowiak, S., Foulsham, T., Eardley, A.F.: Individual differences and personality correlates of navigational performance in the virtual route learning task. Comput. Hum. Behav.45, 402–410 (2015).https://doi.org/10.1016/j.chb.2014.12.041
Moser, E.I., Moser, M.-B., McNaughton, B.L.: Spatial representation in the hippocampal formation: a history. Nat. Neurosci.20, 1448–1464 (2017).https://doi.org/10.1038/nn.4653
Hardcastle, K., Ganguli, S., Giocomo, L.M.: Environmental boundaries as an error correction mechanism for grid cells. Neuron86, 827–839 (2015).https://doi.org/10.1016/j.neuron.2015.03.039
Krupic, J., Bauza, M., Burton, S., Barry, C., O’Keefe, J.: Grid cell symmetry is shaped by environmental geometry. Nature518, 232–235 (2015).https://doi.org/10.1038/nature14153
Krupic, J., Bauza, M., Burton, S., O’Keefe, J.: Local transformations of the hippocampal cognitive map. Science359, 1143–1146 (2018).https://doi.org/10.1126/science.aao4960
Keinath, A.T., Epstein, R.A., Balasubramanian, V.: Environmental deformations dynamically shift the grid cell spatial metric. eLife.7, e38169 (2018).https://doi.org/10.7554/eLife.38169
Hinman, J.R., Chapman, G.W., Hasselmo, M.E.: Neuronal representation of environmental boundaries in egocentric coordinates. Nat Commun.10, 2772 (2019).https://doi.org/10.1038/s41467-019-10722-y
Bellmund, J.L.S., de Cothi, W., Ruiter, T.A., Nau, M., Barry, C., Doeller, C.F.: Deforming the metric of cognitive maps distorts memory. Nat Hum Behav.4, 177–188 (2020).https://doi.org/10.1038/s41562-019-0767-3
Graham, P., Cheng, K.: Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol.19, R935–R937 (2009).https://doi.org/10.1016/j.cub.2009.08.015
Lee, S.A., et al.: Electrophysiological signatures of spatial boundaries in the human subiculum. J. Neurosci.38, 3265–3272 (2018).https://doi.org/10.1523/JNEUROSCI.3216-17.2018
Kelly, J.W., McNamara, T.P., Bodenheimer, B., Carr, T.H., Rieser, J.J.: The shape of human navigation: How environmental geometry is used in maintenance of spatial orientation. Cognition109, 281–286 (2008).https://doi.org/10.1016/j.cognition.2008.09.001
Cheng, K., Newcombe, N.S.: Is there a geometric module for spatial orientation? squaring theory and evidence. Psychon. Bull. Rev.12, 1–23 (2005).https://doi.org/10.3758/BF03196346
Hartley, T., Trinkler, I., Burgess, N.: Geometric determinants of human spatial memory. Cognition94, 39–75 (2004).https://doi.org/10.1016/j.cognition.2003.12.001
O’Keefe, J., Burgess, N.: Geometric determinants of the place fields of hippocampal neurons. Nature381(6581), 425–428 (1996).https://doi.org/10.1038/381425a0
Sjölinder, M., Höök, K., Nilsson, L.-G., Andersson, G.: Age differences and the acquisition of spatial knowledge in a three-dimensional environment: evaluating the use of an overview map as a navigation aid. Int. J. Hum Comput Stud.63, 537–564 (2005).https://doi.org/10.1016/j.ijhcs.2005.04.024
Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. In: Advances in Child Development and Behavior, pp. 9–55. Elsevier (1975)
Dalton, R.C.: The secret is to follow your nose: route path selection and angularity. Environ. Behav.35, 107–131 (2003).https://doi.org/10.1177/0013916502238867
Zacharias, J.: Pedestrian behavior and perception in urban walking environments. J. Plan. Lit.16, 3–18 (2001).https://doi.org/10.1177/08854120122093249
Sadalla, E.K., Montello, D.R.: Remembering changes in direction. Environ. Behav.21, 346–363 (1989).https://doi.org/10.1177/0013916589213006
D’Acci, L.: Aesthetical cognitive perceptions of urban street form. Pedestrian preferences towards straight or curvy route shapes. J. Urban Des.24(6), 896–912 (2019).https://doi.org/10.1080/13574809.2018.1554994
Liu, B., Dong, W., Zhan, Z., Wang, S., Meng, L.: Differences in the gaze behaviours of pedestrians navigating between regular and irregular road patterns. ISPRS Int. J. Geo Inf.9, 45 (2020).https://doi.org/10.3390/ijgi9010045
Moffat, S.D., Zonderman, A.B., Resnick, S.M.: Age differences in spatial memory in a virtual environment navigation task. Neurobiol. Aging22, 787–796 (2001).https://doi.org/10.1016/S0197-4580(01)00251-2
Moffat, S.D., Resnick, S.M.: Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behav. Neurosci.116, 851–859 (2002).https://doi.org/10.1037//0735-7044.116.5.851
Ekstrom, R.B., French, J.W., Harman, H.H.: Kit of factor-referenced cognitive tests. Presented at the (1976)
Lee, S.A., Spelke, E.S.: Two systems of spatial representation underlying navigation. Exp. Brain Res.206, 179–188 (2010).https://doi.org/10.1007/s00221-010-2349-5
Sturz, B.R., Forloines, M.R., Bodily, K.D.: Enclosure size and the use of local and global geometric cues for reorientation. Psychon. Bull. Rev.19, 270–276 (2012).https://doi.org/10.3758/s13423-011-0195-5
Miller, N.: Modeling the effects of enclosure size on geometry learning. Behav. Proc.80, 306–313 (2009).https://doi.org/10.1016/j.beproc.2008.12.011
Anacta, V.J.A., Schwering, A., Li, R., Muenzer, S.: Orientation information in wayfinding instructions: evidences from human verbal and visual instructions. GeoJournal82(3), 567–583 (2016).https://doi.org/10.1007/s10708-016-9703-5
Goodman, J., Gray, P., Khammampad, K., Brewster, S.: Using landmarks to support older people in navigation. In: Brewster, S., Dunlop, M. (eds.) Mobile HCI 2004. LNCS, vol. 3160, pp. 38–48. Springer, Heidelberg (2004).https://doi.org/10.1007/978-3-540-28637-0_4
Goodman-Deane, J., Brewster, S., Gray, P.: How can we best use landmarks to support older people in navigation? Behav. Inf. Technol. (2005).https://doi.org/10.1080/01449290512331319021
Stangl, M., Achtzehn, J., Huber, K., Dietrich, C., Tempelmann, C., Wolbers, T.: Compromised grid-cell-like representations in old age as a key mechanism to explain age-related navigational deficits. Curr. Biol.28, 1108-1115.e6 (2018).https://doi.org/10.1016/j.cub.2018.02.038
Lithfous, S., Dufour, A., Després, O.: Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res. Rev.12, 201–213 (2013).https://doi.org/10.1016/j.arr.2012.04.007
Moffat, S.D., Elkins, W., Resnick, S.M.: Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiol. Aging27, 965–972 (2006).https://doi.org/10.1016/j.neurobiolaging.2005.05.011
Yassa, M.A., Mattfeld, A.T., Stark, S.M., Stark, C.E.L.: Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proc. Natl. Acad. Sci. U.S.A.108, 8873–8878 (2011).https://doi.org/10.1073/pnas.1101567108
Konishi, K., Etchamendy, N., Roy, S., Marighetto, A., Rajah, N., Bohbot, V.D.: Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus23, 1005–1014 (2013).https://doi.org/10.1002/hipo.22181
Bécu, M., et al.: Age-related preference for geometric spatial cues during real-world navigation. Nat Hum Behav.4, 88–99 (2020).https://doi.org/10.1038/s41562-019-0718-z
Kimura, K., Moussavi, Z.: Do older and young adults learn to integrate geometry while navigating in an environment of a serious game? J Exp Neurosci.16, 263310552098886 (2021).https://doi.org/10.1177/2633105520988861
Iaria, G., Palermo, L., Committeri, G., Barton, J.J.S.: Age differences in the formation and use of cognitive maps. Behav. Brain Res.196, 187–191 (2009).https://doi.org/10.1016/j.bbr.2008.08.040
Picucci, L., Caffo, A.O., Bosco, A.: Age and sex differences in a virtual version of the reorientation task. Cogn. Process.10, 272–275 (2009).https://doi.org/10.1007/s10339-009-0321-8
Schuck, N.W., Doeller, C.F., Polk, T.A., Lindenberger, U., Li, S.-C.: Human aging alters the neural computation and representation of space. Neuroimage117, 141–150 (2015).https://doi.org/10.1016/j.neuroimage.2015.05.031
Ishikawa, T., Fujiwara, H., Imai, O., Okabe, A.: Wayfinding with a GPS-based mobile navigation system: a comparison with maps and direct experience. J. Environ. Psychol.28, 74–82 (2008).https://doi.org/10.1016/j.jenvp.2007.09.002
Author information
Authors and Affiliations
Department of Industrial Engineering, Chongqing University, Chongqing, China
Liu Tang
School of Management Science and Real Estate, Chongqing University, Chongqing, China
Yanling Zuo & Jia Zhou
- Liu Tang
You can also search for this author inPubMed Google Scholar
- Yanling Zuo
You can also search for this author inPubMed Google Scholar
- Jia Zhou
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJia Zhou.
Editor information
Editors and Affiliations
Tsinghua University, Beijing, China
Qin Gao
Chongqing University, Chongqing, China
Jia Zhou
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tang, L., Zuo, Y., Zhou, J. (2022). Environmental Boundaries and Road Regularity in Virtual Reality: Examining Their Effects on Navigation Performance and Spatial Cognition. In: Gao, Q., Zhou, J. (eds) Human Aspects of IT for the Aged Population. Design, Interaction and Technology Acceptance. HCII 2022. Lecture Notes in Computer Science, vol 13330. Springer, Cham. https://doi.org/10.1007/978-3-031-05581-2_9
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-031-05580-5
Online ISBN:978-3-031-05581-2
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative