Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Accelerating Quantum Many-Body Configuration Interaction with Directives

  • Conference paper
  • First Online:

Abstract

Many-Fermion Dynamics—nuclear, or MFDn, is a configuration interaction (CI) code for nuclear structure calculations. It is a platform-independent Fortran 90 code using a hybrid MPI+X programming model. For CPU platforms the application has a robust and optimized OpenMP implementation for shared memory parallelism. As part of the NESAP application readiness program for NERSC’s latest Perlmutter system, MFDn has been updated to take advantage of accelerators. The current mainline GPU port is based on OpenACC. In this work we describe some of the key challenges of creating an efficient GPU implementation. Additionally, we compare the support of OpenMP and OpenACC on AMD and NVIDIA GPUs.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Bell, N., Hoberock, J.: Thrust: a productivity-oriented library for CUDA. In: Hwu, W.M.W. (ed.) GPU Computing Gems Jade Edition. Applications of GPU Computing Series, pp. 359–371. Morgan Kaufmann, Boston (2012).https://doi.org/10.1016/B978-0-12-385963-1.00026-5

    Chapter  Google Scholar 

  2. Binder, S., Calci, A., Epelbaum, E., et al.: Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces. Phys. Rev. C93(4), 044002 (2016).https://doi.org/10.1103/PhysRevC.93.044002

    Article  Google Scholar 

  3. Blelloch, G.E.: Prefix sums and their applications. Technical report CMU-CS-90-190, School of Computer Science, Carnegie Mellon University, November 1990.http://www.cs.cmu.edu/~scandal/papers/CMU-CS-90-190.html

  4. Caprio, M.A., Fasano, P.J., Maris, P., McCoy, A.E.: Quadrupole moments and proton-neutron structure in p-shell mirror nuclei. Phys. Rev. C104(3), 034319034319 (2021).https://doi.org/10.1103/PhysRevC.104.034319

    Article  Google Scholar 

  5. Cook, B., et al.: High performance optimizations for nuclear physics code MFDn on KNL. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 366–377. Springer, Cham (2016).https://doi.org/10.1007/978-3-319-46079-6_26

    Chapter  Google Scholar 

  6. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore performance portability through polymorphic memory access patterns. J. Parallel Distrib. Comput.74(12), 3202–3216 (2014).https://doi.org/10.1016/j.jpdc.2014.07.003

    Article  Google Scholar 

  7. Epelbaum, E., et al.: Few- and many-nucleon systems with semilocal coordinate-space regularized chiral two- and three-body forces. Phys. Rev. C99(2), 024313 (2019).https://doi.org/10.1103/PhysRevC.99.024313

    Article  Google Scholar 

  8. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. In: GPU Gems, vol. 3, pp. 851–876. Addison-Wesley Professional (2007). Chap. 39

    Google Scholar 

  9. Kim, J.Y., Kang, J.S., Joh, M.: GPU acceleration of MPAS microphysics WSM6 using OpenACC directives: performance and verification. Comput. Geosci.146, 104627 (2021).https://doi.org/10.1016/j.cageo.2020.104627

    Article  Google Scholar 

  10. Maris, P., Caprio, M.A., Vary, J.P.: Emergence of rotational bands in ab initio no-core configuration interaction calculations of the Be isotopes. Phys. Rev. C91(1), 014310 (2015).https://doi.org/10.1103/PhysRevC.91.014310

    Article  Google Scholar 

  11. Maris, P., Vary, J.P., Navratil, P., et al.: Origin of the anomalous long lifetime of\(^{14}\)C. Phys. Rev. Lett.106(20), 202502 (2011).https://doi.org/10.1103/PhysRevLett.106.202502

    Article  Google Scholar 

  12. Maris, P., Aktulga, H.M., Binder, S., et al.: No core CI calculations for light nuclei with chiral 2- and 3-body forces. J. Phys: Conf. Ser.454, 012063 (2013).https://doi.org/10.1088/1742-6596/454/1/012063

    Article  Google Scholar 

  13. Maris, P., Vary, J.P.: Ab initio nuclear structure calculations of p-shell nuclei with JISP16. Int. J. Mod. Phys. E22, 1330016 (2013).https://doi.org/10.1142/S0218301313300166

    Article  Google Scholar 

  14. Maris, P., Yang, C., Oryspayev, D., Cook, B.: Accelerating an iterative eigensolver for nuclear structure configuration interaction calculations on GPUs using OpenACC (2021).http://arxiv.org/abs/2109.00485

  15. Shao, M., Aktulga, H., Yang, C., et al.: Accelerating nuclear configuration interaction calculations through a preconditioned block iterative eigensolver. Comput. Phys. Commun.222, 1–13 (2018).https://doi.org/10.1016/j.cpc.2017.09.004

    Article MathSciNet  Google Scholar 

  16. Sternberg, P., Ng, E.G., Yang, C., et al.: Accelerating configuration interaction calculations for nuclear structure. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. SC 2008. IEEE Press (2008).https://doi.org/10.5555/1413370.1413386

  17. Suhonen, J.: From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory. Theoretical and Mathematical Physics, Springer, Berlin (2007).https://doi.org/10.1007/978-3-540-48861-3

    Book MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the U.S. Department of Energy (DOE) under Award Nos. DE-FG02-95ER40934 and DE-SC0018223 (SciDAC/NUCLEI), and by the DOE Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program (administered by the Oak Ridge Institute for Science and Education (ORISE), managed by ORAU under contract number DE-SC0014664).

This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231, as well as resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the DOE Office of Science under Contract No. DE-AC05-00OR22725.

Author information

Authors and Affiliations

  1. National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    Brandon Cook

  2. Department of Physics, University of Notre Dame, Notre Dame, IN, USA

    Patrick J. Fasano

  3. Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

    Pieter Maris

  4. Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    Chao Yang

  5. Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA

    Dossay Oryspayev

Authors
  1. Brandon Cook

    You can also search for this author inPubMed Google Scholar

  2. Patrick J. Fasano

    You can also search for this author inPubMed Google Scholar

  3. Pieter Maris

    You can also search for this author inPubMed Google Scholar

  4. Chao Yang

    You can also search for this author inPubMed Google Scholar

  5. Dossay Oryspayev

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toBrandon Cook.

Editor information

Editors and Affiliations

  1. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    Sridutt Bhalachandra

  2. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    Christopher Daley

  3. Oak Ridge National Laboratory, Oak Ridge, DE, USA

    Verónica Melesse Vergara

Rights and permissions

Copyright information

© 2022 P. Maris, P.J. Fasano, Brookhaven Science Associates, LLC, and The Regents of the University of California, manager and operator of Lawrence Berkley National Laboratory, under exclusive license to Springer Nature Switzerland AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cook, B., Fasano, P.J., Maris, P., Yang, C., Oryspayev, D. (2022). Accelerating Quantum Many-Body Configuration Interaction with Directives. In: Bhalachandra, S., Daley, C., Melesse Vergara, V. (eds) Accelerator Programming Using Directives. WACCPD 2021. Lecture Notes in Computer Science(), vol 13194. Springer, Cham. https://doi.org/10.1007/978-3-030-97759-7_6

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp