Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 13157))
Included in the following conference series:
2041Accesses
4Citations
Abstract
Since the advent of sidechains in 2014, they have been acknowledged as the key enabler of blockchain interoperability and upgradability. However, sidechains suffer from significant challenges such as centralization, inefficiency and insecurity, meaning that they are rarely used in practice. In this paper, we presentSEPoW, a secure and efficient sidechains construction that is suitable for proof of work (PoW) sidechain systems. The drawbacks for the centralized exchange of cross-chain assets in the participating blockchains are overcome by our decentralizedSEPoW. To reduce the size of a cross-chain proof, we introduce merged mining into ourSEPoW such that the proof consists of two Merkle tree paths regardless of the size of the current blockchain. We prove that the proposedSEPoW achieves the desirable security properties that a secure sidechains construction should have. As an exemplary concrete instantiation we proposeSEPoW for a PoW blockchain system consistent with Bitcoin. We evaluate the size ofSEPoW proof and compare it with the state-of-the-art PoW sidechains protocols. Results demonstrate thatSEPoW achieves a proof size of 416 bytes which is roughly 123\(\times \), 510\(\times \) and 62000\(\times \) smaller than zkRelay proof, PoW sidechains proof and BTCRelay proof, respectively.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 12583
- Price includes VAT (Japan)
- Softcover Book
- JPY 15729
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008).http://bitcoin.org/bitcoin.pdf
Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: S&P 2019, Piscataway, pp. 139–156. IEEE (2019)
Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326. Springer, Cham (2014).https://doi.org/10.1007/978-3-319-11212-1_18
Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014).https://www.blockstream.com/sidechains.pdf
Buterin, V.: Ethereum: a next-generation smart contract and decentralized application platform (2014).https://www.github.com/ethereum/wiki/wiki/ White-Paper
BTCRelay, Community: BTCRelay reference implementation (2017).https://www.github.com/ethereum/btcrelay
Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 21–34. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-43725-1_3
Garoffolo, A., Kaidalov, D., Oliynykov, R.: Zendoo: a zk-SNARK verifiable cross-chain transfer protocol enabling decoupled and decentralized sidechains. In: ICDCS 2020, Piscataway, pp. 1257–1262. IEEE (2020)
Dilley, J., Poelstra, A., Wilkins, J., Piekarska, M., Gorlick, B., Friedenbach, M.: Strong federations: an interoperable blockchain solution to centralized third party risks. CoRRarXiv:1612.05491 (2016)
Sztorc, P.: Drivechain - the simple two way peg (2015).https://www.truthcoin.info/blog/drivechain/
Lerner, S.D.: Drivechains, sidechains and hybrid 2-way peg designs (2016).https://docs.rsk.co/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
Westerkamp, M., Eberhardt, J.: zkRelay: facilitating sidechains using zkSNARK-based chain-relays. In: Euro S&P Workshops, Piscataway, pp. 378–386. IEEE (2020)
Lerner, S.D.: Rootstock: smart contracts on bitcoin network (2015).https://blog.rsk.co/wp-content/uploads/2019/02/RSK_White_Paper-ORIGINAL.pdf
Singh, A., Click, K., Parizi, R.M., Zhang, Q., Dehghantanha, A., Choo, K.R.: Sidechain technologies in blockchain networks: an examination and state-of-the-art review. J. Netw. Comput. Appl.149, 102471 (2020)
Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum Smart Contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer, Heidelberg (2017).https://doi.org/10.1007/978-3-662-54455-6_8
Moore, T., Christin, N.: Beware the middleman: empirical analysis of bitcoin-exchange risk. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33. Springer, Heidelberg (2013).https://doi.org/10.1007/978-3-642-39884-1_3
Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-51280-4_27
Judmayer, A., Zamyatin, A., Stifter, N., Voyiatzis, A.G., Weippl, E.: Merged mining: curse or cure? In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 316–333. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-67816-0_18
Wang, J., Wang, H.: Monoxide: scale out blockchains with asynchronous consensus zones. In: Lorch, J.R., Yu, M. (eds.) NSDI 2019, pp. 95–112. USENIX Association, Berkeley (2019)
Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015).https://doi.org/10.1007/978-3-662-46803-6_10
Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-56614-6_22
Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols. IACR Cryptol. ePrint Arch.2015, 1019 (2015)
Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-63688-7_12
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014).https://doi.org/10.1007/978-3-662-44381-1_16
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC 2013, pp. 111–120. ACM, New York (2013)
Bünz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: super-light clients for cryptocurrencies. In: S&P 2020, Piscataway, pp. 928–946. IEEE (2020)
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von Neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX Security 2014, pp. 781–796. USENIX Association, Berkeley (2014)
Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework (2016).https://www.polkadot.network
Buchman, E.: Tendermint: byzantine fault tolerance in the age of blockchains (2016).https://github.com/tendermint/tendermint
Group, T.I.P.C.: Interledger protocol v4 (2021).https://www.interledger.org
Hosp, J., Hoenisch, T., Kittiwongsunthorn, P.: COMIT - cryptographically-secure off-chain multi-asset instant transaction network. CoRRarXiv:1810.02174 (2018)
Tian, W., Pan, W., Shaobin, C., Ying, M., Anfeng, L., Mande, X.: A unified trustworthy environment establishment based on edge computing in industrial IoT. IEEE Trans. Ind. Inform.16(9), 6083–6091 (2020).https://doi.org/10.1109/TII.2019.2955152
Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts (2017).https://www.plasma.io/plasma.pdf
Tian, W., et al.: Propagation modeling and defending of a mobile sensor worm in wireless sensor and actuator networks. Sensors17(1), 139 (2017).https://doi.org/10.3390/s17010139
Khalil, R., Gervais, A.: NOCUST - a non-custodial 2nd-layer financial intermediary. IACR Cryptol. ePrint Arch.2018, 642 (2018)
Mingfeng, H., Anfeng, L., Tian, W., Changqin, H.: Green data gathering under delay differentiated services constraint for internet of things. Wirel. Commun. Mob. Comput.2018, 1–23 (2018).https://doi.org/10.1155/2018/9715428
Teutsch, J., Straka, M., Boneh, D.: Retrofitting a two-way peg between blockchains. CoRRarXiv:1908.03999 (2019)
Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.J.: XCLAIM: trustless, interoperable, cryptocurrency-backed assets. In: S&P 2019, Piscataway, pp. 193–210. IEEE (2019)
Acknowledgment
The authors would like to thank the anonymous reviewers of ICA3PP 2021 for their insightful suggestions. This work is partially supported by the Shandong Provincial Key Research and Development Program under Grant Number 2019JZZY020127.
Author information
Authors and Affiliations
State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093, China
Taotao Li, Mingsheng Wang, Zhihong Deng & Dongdong Liu
School of Cyber Security, University of Chinese Academy of Sciences, Beijing, 100049, China
Taotao Li, Mingsheng Wang & Dongdong Liu
- Taotao Li
Search author on:PubMed Google Scholar
- Mingsheng Wang
Search author on:PubMed Google Scholar
- Zhihong Deng
Search author on:PubMed Google Scholar
- Dongdong Liu
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toTaotao Li.
Editor information
Editors and Affiliations
Xiamen University, Xiamen, China
Yongxuan Lai
Beijing Normal University, Zhuhai, China
Tian Wang
Xiamen University, Xiamen, China
Min Jiang
Tianjin University, Tianjin, China
Guangquan Xu
Hunan University, Changsha, China
Wei Liang
University of Naples Parthenope, Naples, Italy
Aniello Castiglione
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, T., Wang, M., Deng, Z., Liu, D. (2022).SEPoW: Secure and Efficient Proof of Work Sidechains. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_24
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-95390-4
Online ISBN:978-3-030-95391-1
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative