Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Abstract

Aortic dissection (AD) is a dangerous disease usually diagnosed by computed tomography angiography. Segmentation of true and false lumens of aortic trunk and major branches is very important for the diagnosis and treatment of this disease. In this paper, we proposed a fully automatic vessel analysis algorithm for dissected aorta, which can output centerlines, true lumen, and false lumen of trunk and major branches, and perfusion source of branches. In our experiment, the mean dice similarity coefficient (DSC) of true lumen segmentation was 0.939 for trunk and 0.912 for branch while the mean DSC of whole lumen segmentation was 0.974 for trunk and 0.937 for branch, and the classification accuracy of branch perfusion source was 0.863.

This work was supported in part by the National Natural Science Foundation of China under Grants 61976121 and 82071921.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Pepe, A., et al.: Detection, segmentation, simulation and visualization of aortic dissections: a review. Med. Image Anal.65, 101773 (2020)

    Article  Google Scholar 

  2. Chiesa, R., Melissano, G., Zangrillo, A., Coselli, J.S.: Thoraco-Abdominal Aorta: Surgical and Anesthetic Management, vol. 783. Springer, Milano (2011).https://doi.org/10.1007/978-88-470-1857-0

    Book  Google Scholar 

  3. Kovács, T., Cattin, P., Alkadhi, H., Wildermuth, S., Székely, G.: Automatic segmentation of the aortic dissection membrane from 3D CTA images. In: Yang, G.-Z., Jiang, T.Z., Shen, D., Gu, L., Yang, J. (eds.) MIAR 2006. LNCS, vol. 4091, pp. 317–324. Springer, Heidelberg (2006).https://doi.org/10.1007/11812715_40

    Chapter  Google Scholar 

  4. Lee, N., Tek, H., Laine, A.F.: True-false lumen segmentation of aortic dissection using multi-scale wavelet analysis and generative-discriminative model matching. In: Medical Imaging 2008: Computer-Aided Diagnosis, vol. 6915, p. 69152V. International Society for Optics and Photonics (2008)

    Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Li, Z., et al.: Lumen segmentation of aortic dissection with cascaded convolutional network. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 122–130. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-12029-0_14

    Chapter  Google Scholar 

  8. Hahn, L.D., et al.: CT-based true-and false-lumen segmentation in type B aortic dissection using machine learning. Radiol. Cardiothorac. Imaging2(3), e190179 (2020)

    Article  Google Scholar 

  9. Cao, L., et al.: Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning. Eur. J. Radiol.121, 108713 (2019)

    Article  Google Scholar 

  10. Fantazzini, A., et al.: 3D automatic segmentation of aortic computed tomography angiography combining multi-view 2D convolutional neural networks. Cardiovasc. Eng. Technol.11(5), 576–586 (2020)

    Article  Google Scholar 

  11. Xu, X., He, Z., Niu, K., Zhang, Y., Tang, H., Tan, L.: An automatic detection scheme of acute stanford type A aortic dissection based on DCNNs in CTA images. In: Proceedings of the 2019 4th International Conference on Multimedia Systems and Signal Processing, pp. 16–20 (2019)

    Google Scholar 

  12. Tan, Z., Duan, Y., Wu, Z., Feng, J., Zhou, J.: A cascade regression model for anatomical landmark detection. In: STACOM 2019. LNCS, vol. 12009, pp. 43–51. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-39074-7_5

    Chapter  Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Automation, Tsinghua University, Beijing, China

    Hui Fang, Zhanqiang Guo, Zimeng Tan, Jinyang Yu, Jie Zhou & Jianjiang Feng

  2. Beijing National Research Center for Information Science and Technology, Beijing, China

    Hui Fang, Zhanqiang Guo, Zimeng Tan, Jinyang Yu, Jie Zhou & Jianjiang Feng

  3. Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

    Guozhu Shao, Jia Liu, Yukun Cao & Heshui Shi

Authors
  1. Hui Fang

    You can also search for this author inPubMed Google Scholar

  2. Zhanqiang Guo

    You can also search for this author inPubMed Google Scholar

  3. Guozhu Shao

    You can also search for this author inPubMed Google Scholar

  4. Zimeng Tan

    You can also search for this author inPubMed Google Scholar

  5. Jinyang Yu

    You can also search for this author inPubMed Google Scholar

  6. Jia Liu

    You can also search for this author inPubMed Google Scholar

  7. Yukun Cao

    You can also search for this author inPubMed Google Scholar

  8. Jie Zhou

    You can also search for this author inPubMed Google Scholar

  9. Heshui Shi

    You can also search for this author inPubMed Google Scholar

  10. Jianjiang Feng

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJianjiang Feng.

Editor information

Editors and Affiliations

  1. King’s College London, London, UK

    Esther Puyol Antón

  2. Sunnybrook Research Institute, Toronto, Canada

    Mihaela Pop

  3. Universitat de Barcelona, BCN-AIM Artificial Intelligence in Medicine Lab, Barcelona, Spain

    Carlos Martín-Isla

  4. Inria - Epione Group, Sophia Antipolis, France

    Maxime Sermesant

  5. King’s College London, London, UK

    Avan Suinesiaputra

  6. Pompeu Fabra University, Barcelona, Spain

    Oscar Camara

  7. University of Barcelona, Barcelona, Spain

    Karim Lekadir

  8. King’s College London, London, UK

    Alistair Young

Rights and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, H.et al. (2022). Vessel Extraction and Analysis of Aortic Dissection. In: Puyol Antón, E.,et al. Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge. STACOM 2021. Lecture Notes in Computer Science(), vol 13131. Springer, Cham. https://doi.org/10.1007/978-3-030-93722-5_6

Download citation

Publish with us

Societies and partnerships

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp