Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Mixed-Neighborhood, Multi-speed Cellular Automata for Safety-Aware Pedestrian Prediction

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 13085))

  • 854Accesses

Abstract

Predicting pedestrian movement in unregulated traffic areas, such as parking grounds, marks a complex challenge in safety for automated vehicles. Without the ability to make certifiable predictions and judgments about safe interactions with other traffic agents in a real-time capable and economical fashion, the goal of self-driving vehicles cannot be reached. We propose a computationally efficient model for pedestrian behavior prediction on a short finite time horizon to ensure safety in automated driving. The model is based on a cellular automaton, working on an occupancy grid map and assumes a physical pedestrian capability constraint. It is enriched by a variable update rate with a mixed neighborhood, overcoming the limitations of vanilla cellular automata and coming closer to the results of state-of-the-art algorithms, while keeping the benefits of its straightforward parallelizability. The approach is evaluated on synthetic benchmarks outlining the general performance parameters as well as in an implementation on potential real-world situations.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Bansal, M., Krizhevsky, A., Ogale, A.: ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst. arXiv preprintarXiv:1812.03079 (2018)

  2. Batkovic, I., Zanon, M., Lubbe, N., Falcone, P.: A computationally efficient model for pedestrian motion prediction, pp. 374–379 (2018)

    Google Scholar 

  3. Blue, V.J., Embrechts, M.J., Adler, J.L.: Cellular automata modeling of pedestrian movements. In: ICSMC, vol. 3, pp. 2320–2323. IEEE (1997)

    Google Scholar 

  4. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. Part B Methodol.35(3), 293–312 (2001)

    Article  Google Scholar 

  5. Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs. In: ITSC, pp. 392–399. IEEE (2014)

    Google Scholar 

  6. Camara, F., et al.: Pedestrian models for autonomous driving part II: high-level models of human behavior. IEEE Trans. Intell. Transp. Syst.22(9), 5453–5472 (2021)

    Google Scholar 

  7. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. In: CoRL, pp. 86–99 (2020)

    Google Scholar 

  8. Chopard, B., Droz, M.: Cellular automata modeling of physical systems (1999)

    Google Scholar 

  9. Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty for safe automated driving. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 439–445. Springer, Cham (2018).https://doi.org/10.1007/978-3-319-99229-7_37

    Chapter  Google Scholar 

  10. Das, A.K., Ganguly, A., Dasgupta, A., Bhawmik, S., Chaudhuri, P.P.: Efficient characterisation of cellular automata. IEE Proc. E - Comput. Digit. Tech.137(1), 81–87 (1990)

    Article  Google Scholar 

  11. Dascalu, M.: Cellular Automata Hardware Implementations - an Overview. Rom. J. Inf. Sci. Technol.19(4), 360–368 (2016)

    Google Scholar 

  12. Dorff, S.V., Kneissl, M., Fränzle, M.: Safe, deterministic trajectory planning for unstructured and partially occluded environments. In: ITSC. IEEE (to appear September 2021)

    Google Scholar 

  13. Gardner, M.: Mathematical games. Sci. Am.223(4), 120–123 (1970)

    Article  Google Scholar 

  14. Gibson, M.J., Keedwell, E.C., Savić, D.A.: An investigation of the efficient implementation of cellular automata on multi-core CPU and GPU hardware. J. Parallel Distrib. Comput.77, 11–25 (2015)

    Article  Google Scholar 

  15. Goldhammer, M., Gerhard, M., Zernetsch, S., Doll, K., Brunsmann, U.: Early prediction of a pedestrian’s trajectory at intersections. In: ITSC, pp. 237–242. IEEE (2013)

    Google Scholar 

  16. Helbing, D.: A mathematical model for the behavior of pedestrians. Behav.l Sci.36(4), 298–310 (1991)

    Article  Google Scholar 

  17. Hoermann, S., Kunz, F., Nuss, D., Renter, S., Dietmayer, K.: Entering crossroads with blind corners. A safe strategy for autonomous vehicles. In: IV. IEEE, June 2017

    Google Scholar 

  18. Klüpfel, H.L.: A cellular automaton model for crowd movement and egress simulation. PhD Thesis (2012)

    Google Scholar 

  19. Kooij, J.F., Schneider, N., Gavrila, D.M.: Analysis of pedestrian dynamics from a vehicle perspective. In: IV, pp. 1445–1450. IEEE (2014)

    Google Scholar 

  20. Kooij, J.F.P., Flohr, F., Pool, E.A.I., Gavrila, D.M., Schneider, N.: Context-based path prediction for targets with switching dynamics. Int. J. Comput. Vis.127, 239–262 (2018)

    Article  Google Scholar 

  21. Koschi, M., Pek, C., Beikirch, M., Althoff, M.: Set-based prediction of pedestrians in urban environments considering formalized traffic rules. In: ITSC, pp. 2704–2711. IEEE (2018)

    Google Scholar 

  22. Lee, M., Jo, K., Sunwoo, M.: Collision risk assessment for possible collision vehicle in occluded area based on precise map. In: ITSC, pp. 1–6. IEEE (2017)

    Google Scholar 

  23. Lefèvre, S., Vasquez, D., Laugier, C.: A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J.1(1), 1–14 (2014).https://doi.org/10.1186/s40648-014-0001-z

    Article  Google Scholar 

  24. Liu, S.B., Roehm, H., Heinzemann, C., Lütkebohle, I., Oehlerking, J., Althoff, M.: Provably safe motion of mobile robots in human environments. In: IROS, pp. 1351–1357. IEEE (2017)

    Google Scholar 

  25. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. de Physique I2(12), 2221–2229 (1992)

    Article  Google Scholar 

  26. Neogi, S., Hoy, M., Chaoqun, W., Dauwels, J.: Context based pedestrian intention prediction using factored latent dynamic conditional random fields. In: SSCI, pp. 1–8. IEEE

    Google Scholar 

  27. Nikolić, M.: Data-driven fundamental models for pedestrian movements. Technical report EPFL (2017)

    Google Scholar 

  28. Oliveira, G.M.B., et al.: A cellular automata-based path-planning for a cooperative and decentralized team of robots. In: CEC, pp. 739–746 (2019)

    Google Scholar 

  29. Orzechowski, P.F., Meyer, A., Lauer, M.: Tackling occlusions and limited sensor range with set-based safety verification. In: ITSC, pp. 1729–1736. IEEE (2018)

    Google Scholar 

  30. Pei, H., Lou, Y., Ye, F.: Robot path planning based on cellular automata with mixed neighborhoods. In: ISCID, pp. 114–117. IEEE (2018)

    Google Scholar 

  31. Radwan, N., Burgard, W., Valada, A.: Multimodal interaction-aware motion prediction for autonomous street crossing. Int. J. Robot. Res.39(13), 1567–1598 (2020)

    Article  Google Scholar 

  32. Rehder, E., Wirth, F., Lauer, M., Stiller, C.: Pedestrian prediction by planning using deep neural networks. In: ICRA, pp. 5903–5908. IEEE (2018)

    Google Scholar 

  33. Sarmady, S., Haron, F., Talib, A.Z.: Simulation of pedestrian movements using fine grid cellular automata model. arXiv preprintarXiv:1406.3567 (2014)

  34. Schaefer, L., Mackulak, G., Cochran, J., Cherilla, J.: Application of a general particle system model to movement of pedestrians and vehicles. In: WSC, vol. 2, pp. 1155–1160. IEEE (1998)

    Google Scholar 

  35. Schöller, C., Aravantinos, V., Lay, F., Knoll, A.: What the constant velocity model can teach us about pedestrian motion prediction. IEEE Robot. Autom. Lett.5(2), 1696–1703 (2020)

    Article  Google Scholar 

  36. Seitz, M.J.: Simulating pedestrian dynamics. Dissertation, Technische Universität München, München (2016)

    Google Scholar 

  37. Toffoli, T., Margolus, N.: Cellular Automata Machines: a New Environment for Modeling. MIT Press, Cambridge (1987)

    Book  Google Scholar 

  38. Yi, S., Li, H., Wang, X.: Pedestrian behavior understanding and prediction with deep neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part I. LNCS, vol. 9905, pp. 263–279. Springer, Cham (2016).https://doi.org/10.1007/978-3-319-46448-0_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Corporate R&D Department of DENSO Automotive Deutschland GmbH, Freisinger Street 21–23, 85386, Eching, Germany

    Sebastian vom Dorff, Chih-Hong Cheng & Hasan Esen

  2. Department of Computing Science, Carl von Ossietzky University, 26111, Oldenburg, Germany

    Sebastian vom Dorff & Martin Fränzle

Authors
  1. Sebastian vom Dorff

    You can also search for this author inPubMed Google Scholar

  2. Chih-Hong Cheng

    You can also search for this author inPubMed Google Scholar

  3. Hasan Esen

    You can also search for this author inPubMed Google Scholar

  4. Martin Fränzle

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSebastian vom Dorff.

Editor information

Editors and Affiliations

  1. University of York, York, UK

    Radu Calinescu

  2. Carnegie Mellon University, Moffett Field, CA, USA

    Corina S. Păsăreanu

Rights and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dorff, S.v., Cheng, CH., Esen, H., Fränzle, M. (2021). Mixed-Neighborhood, Multi-speed Cellular Automata for Safety-Aware Pedestrian Prediction. In: Calinescu, R., Păsăreanu, C.S. (eds) Software Engineering and Formal Methods. SEFM 2021. Lecture Notes in Computer Science(), vol 13085. Springer, Cham. https://doi.org/10.1007/978-3-030-92124-8_28

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp