Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Flexible Placements of Graphs with Rotational Symmetry

  • Conference paper
  • First Online:

Part of the book series:Springer Proceedings in Advanced Robotics ((SPAR,volume 21))

Included in the following conference series:

  • 284Accesses

Abstract

We study the existence of ann-fold rotationally symmetric placement of a symmetric graph in the plane allowing a continuous deformation that preserves the symmetry and the distances between adjacent vertices. We show that such a flexible placement exists if and only if the graph has a NAC-colouring satisfying an additional property on the symmetry; a NAC-colouring is a surjective edge colouring by two colours such that every cycle is either monochromatic, or there are at least two edges of each colour.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Deuring, M.: Lectures on the Theory of Algebraic Functions of One Variable. LNM, vol. 314, Springer, Heidelberg (1973).https://doi.org/10.1007/BFb0060944

  2. Dewar, S.: Flexible placements of periodic graphs in the plane. Discrete Comput. Geom. 1–44 (2021).https://doi.org/10.1007/s00454-021-00328-x

  3. Dixon, A.: On certain deformable frameworks. Messenger29(2), 1–21 (1899)

    MATH  Google Scholar 

  4. Gallet, M., Grasegger, G., Legerský, J., Schicho, J.: On the existence of paradoxical motions of generically rigid graphs on the sphere. SIAM J. Dis. Math.35(1), 325–361 (2021).https://doi.org/10.1137/19M1289467

    Article MathSciNet MATH  Google Scholar 

  5. Grasegger, G., Legerský, J.: FlexRiLoG –SageMath package for Flexible and Rigid Labelings of Graphs. Zenodo (2019).https://doi.org/10.5281/zenodo.3078758

  6. Grasegger, G., Legerský, J., Schicho, J.: Animated motions of exceptional flexible instances of generically rigid graphs. In: Bridges Linz 2019 Conference Proceedings, pp. 255–262. Tessellations Publishing, Phoenix, Arizona (2019).https://doi.org/10.5281/zenodo.3518805

  7. Grasegger, G., Legerský, J., Schicho, J.: Graphs with flexible labelings. Dis. Comput. Geom.62(2), 461–480 (2018).https://doi.org/10.1007/s00454-018-0026-9

    Article MathSciNet MATH  Google Scholar 

  8. Grasegger, G., Legerský, J., Schicho, J.: Graphs with flexible labelings allowing injective realizations. Dis. Math.343(6), 111713 (2020).https://doi.org/10.1016/j.disc.2019.111713

  9. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Mathematics, American Mathematical Society, Rhode Island (1993).https://doi.org/10.1090/gsm/002

  10. Jordán, T., Kaszanitzky, V.E., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the plane. Discrete Comput. Geom.55(2), 314–372 (2016).https://doi.org/10.1007/s00454-015-9755-1

    Article MathSciNet MATH  Google Scholar 

  11. Owen, J., Power, S.: Frameworks symmetry and rigidity. Int. J. Comput. Geom. Appl.20(6), 723–750 (2012).https://doi.org/10.1142/S0218195910003505

  12. Pollaczek-Geiringer, H.: Über die Gliederung ebener Fachwerke. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM)7, 58–72 (1927).https://doi.org/10.1002/zamm.19270070107

    Article MATH  Google Scholar 

  13. Stachel, H.: On the flexibility and symmetry of overconstrained mechanisms. Philos. Trans. Royal Soc. London A: Math., Phys. Eng. Sci.372(2008), 20120040 (2013).https://doi.org/10.1098/rsta.2012.0040

  14. Walter, D., Husty, M.: On a nine-bar linkage, its possible configurations and conditions for paradoxical mobility. In: 12th World Congress on Mechanism and Machine Science, IFToMM (2007)

    Google Scholar 

  15. Wunderlich, W.: On deformable nine-bar linkages with six triple joints. Indagationes Mathematicae (Proceedings)79(3), 257–262 (1976).https://doi.org/10.1016/1385-7258(76)90052-4

    Article MathSciNet MATH  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675789. The project was supported by the Austrian Science Fund (FWF): P31061, P31888 and W1214-N15, and by the Ministry of Education, Youth and Sports of the Czech Republic, project no. CZ.02.1.01/0.0/ 0.0/16_019/0000778.

Author information

Authors and Affiliations

  1. Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria

    Sean Dewar & Georg Grasegger

  2. Johannes Kepler University Linz, Research Institute for Symbolic Computation, Linz, Austria

    Jan Legerský

  3. Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague, Prague, Czechia

    Jan Legerský

Authors
  1. Sean Dewar

    You can also search for this author inPubMed Google Scholar

  2. Georg Grasegger

    You can also search for this author inPubMed Google Scholar

  3. Jan Legerský

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSean Dewar.

Editor information

Editors and Affiliations

  1. Department of Engineering, Manchester Metropolitan University, Manchester, UK

    William Holderbaum

  2. School of Engineering, London South Bank University, London, UK

    J. M. Selig

Rights and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dewar, S., Grasegger, G., Legerský, J. (2022). Flexible Placements of Graphs with Rotational Symmetry. In: Holderbaum, W., Selig, J.M. (eds) 2nd IMA Conference on Mathematics of Robotics. IMA 2020. Springer Proceedings in Advanced Robotics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-91352-6_9

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp