- Michal Dobrovolny ORCID:orcid.org/0000-0001-7476-11939,
- Jaroslav Langer ORCID:orcid.org/0000-0002-6538-67049,
- Ali Selamat ORCID:orcid.org/0000-0001-9746-84599,10,11 &
- …
- Ondrej Krejcar ORCID:orcid.org/0000-0002-5992-25749
Part of the book series:Communications in Computer and Information Science ((CCIS,volume 1463))
Included in the following conference series:
1345Accesses
Abstract
The use of long short-term memory (LSTM) for session-based recommendations is described in this research. This study uses char-level LSTM as a real-time recommendation service to test and offer the optimal solution. Our strategy can be used to any situation. Two LSTM layers and a thick layer make up our model. To evaluate the prediction results, we use the mean of squared errors. We also put our recall and precision metrics prediction to the test. The best-performing network had roughly 2000 classes and was a trainer for the last year of likes on an image-based social platform. On twenty objects, our best model had a recall value of 0.182 and a precision value of 0.061.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 13727
- Price includes VAT (Japan)
- Softcover Book
- JPY 17159
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Nasser, M., Mahmoud, K.: Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl.31(7), 2727–2740 (2017).https://doi.org/10.1007/s00521-017-3225-z
Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649. IEEE, New York (2012). wOS:000309166203102
Dobrovolny, M., Mls, K., Krejcar, O., Mambou, S., Selamat, A.: Medical image data upscaling with generative adversarial networks. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2020. LNCS, vol. 12108, pp. 739–749. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-45385-5_66
Dobrovolny, M., Selamat, A., Krejcar, O.: Session based recommendations using recurrent neural networks - long short-term memory. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds.) ACIIDS 2021. LNCS (LNAI), vol. 12672, pp. 53–65. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-73280-6_5
Dobrovolny, M., Soukal, I., Lim, K.C., Selamat, A., Krejcar, O.: Forecasting of FOREX price trend using recurrent neural network - long short-term memory, pp. 95–103 April 2020. 10.36689/uhk/hed/2020-01-011,http://hdl.handle.net/20.500.12603/212
Gunawardana, A., Shani, G.: Evaluating recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 265–308. Springer, Boston (2015).https://doi.org/10.1007/978-1-4899-7637-6_8
Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst.5(4), 1–19 (2016).https://doi.org/10.1145/2827872
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science313(5786), 504–507 (2006).https://doi.org/10.1126/science.1127647, wOS:000239308600057
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput.9(8), 1735–1780 (1997).https://doi.org/10.1162/neco.1997.9.8.1735
Kuchaiev, O., Ginsburg, B.: Training deep autoencoders for collaborative filtering.arXiv:1708.01715 (2017)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 105–114. IEEE, New York (2017). wOS:000418371400012
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing234, 11–26 (2017).https://doi.org/10.1016/j.neucom.2016.12.038, wOS:000395221800002
Mambou, S., Krejcar, O., Selamat, A., Dobrovolny, M., Maresova, P., Kuca, K.: Novel thermal image classification based on techniques derived from mathematical morphology: case of breast cancer. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2020. LNCS, vol. 12108, pp. 683–694. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-45385-5_61
Pena-Barragan, J.M., Ngugi, M.K., Plant, R.E., Six, J.: Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Envir.115(6), 1301–1316 (2011).https://doi.org/10.1016/j.rse.2011.01.009
Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet collaborative filtering. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015 Companion, pp. 111–112. Association for Computing Machinery, Florence, May 2015.https://doi.org/10.1145/2740908.2742726
Sun, Y., Chen, J., Liu, Q., Liu, G.: Learning image compressed sensing with sub-pixel convolutional generative adversarial network. Pattern Recogn.98, 107051 (2020).https://doi.org/10.1016/j.patcog.2019.107051,http://www.sciencedirect.com/science/article/pii/S003132031930353X
Vaiyapuri, T., Binbusayyis, A.: Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation. PeerJ Comput. Sci.6, e327 (2020).https://doi.org/10.7717/peerj-cs.327 wOS:000599181100001
Varsamopoulos, S., Bertels, K., Almudever, C.G.: Designing neural network based decoders for surface codes, p. 13 (2018)
Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging36(12), 2536–2545 (2017).https://doi.org/10.1109/TMI.2017.2708987, wOS:000417913600013
Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-n recommender systems. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining WSDM 2016, pp. 153–162. Association for Computing Machinery, San Francisco, California February 2016.https://doi.org/10.1145/2835776.2835837
Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging37(6), 1348–1357 (2018).https://doi.org/10.1109/TMI.2018.2827462, wOS:000434302700006
Acknowledgment
The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic.
Author information
Authors and Affiliations
Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Kralove, Hradec Kralove, Czech Republic
Michal Dobrovolny, Jaroslav Langer, Ali Selamat & Ondrej Krejcar
Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
Ali Selamat
School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Malaysia
Ali Selamat
- Michal Dobrovolny
You can also search for this author inPubMed Google Scholar
- Jaroslav Langer
You can also search for this author inPubMed Google Scholar
- Ali Selamat
You can also search for this author inPubMed Google Scholar
- Ondrej Krejcar
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toOndrej Krejcar.
Editor information
Editors and Affiliations
Wrocław University of Science and Technology, Wrocław, Poland
Krystian Wojtkiewicz
VU Amsterdam, Amsterdam, The Netherlands
Jan Treur
University of the West of England, Bristol, UK
Elias Pimenidis
Wrocław University of Science and Technology, Wrocław, Poland
Marcin Maleszka
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dobrovolny, M., Langer, J., Selamat, A., Krejcar, O. (2021). Session Based Recommendations Using Char-Level Recurrent Neural Networks. In: Wojtkiewicz, K., Treur, J., Pimenidis, E., Maleszka, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2021. Communications in Computer and Information Science, vol 1463. Springer, Cham. https://doi.org/10.1007/978-3-030-88113-9_3
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-88112-2
Online ISBN:978-3-030-88113-9
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative