Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Blending Pruning Criteria for Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 12894))

Included in the following conference series:

  • 2544Accesses

Abstract

The advancement of convolutional neural networks (CNNs) on various vision applications has attracted lots of attention. Yet the majority of CNNs are unable to satisfy the strict requirement for real-world deployment. To overcome this, the recent popular network pruning is an effective method to reduce the redundancy of the models. However, the ranking of filters according to their “importance” on different pruning criteria may be inconsistent. One filter could be important according to a certain criterion, while it is unnecessary according to another one, which indicates that each criterion is only a partial view of the comprehensive “importance”. From this motivation, we propose a novel framework to integrate the existing filter pruning criteria by exploring the criteria diversity. The proposed framework contains two stages: Criteria Clustering and Filters Importance Calibration. First, we condense the pruning criteria via layerwise clustering based on the rank of “importance” score. Second, within each cluster, we propose a calibration factor to adjust their significance for each selected blending candidates and search for the optimal blending criterion via Evolutionary Algorithm. Quantitative results on the CIFAR-100 and ImageNet benchmarks show that our framework outperforms the state-of-the-art baselines, regrading to the compact model performance after pruning.

W. He and Z. Huang—Equal contribution.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Beyer, H.G., Schwefel, H.P.: Evolution strategies-a comprehensive introduction. Natural Comput.1(1), 3–52 (2002)

    Article MathSciNet  Google Scholar 

  2. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000).https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  3. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  4. Guo, J., Ouyang, W., Xu, D.: Multi-dimensional pruning: A unified framework for model compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1508–1517 (2020)

    Google Scholar 

  5. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. He, W., Wu, M., Liang, M., Lam, S.K.: Cap: context-aware pruning for semantic segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 960–969, January 2021

    Google Scholar 

  8. He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., Yang, Y.: Learning filter pruning criteria for deep convolutional neural networks acceleration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  9. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2019)

    Google Scholar 

  10. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397 (2017)

    Google Scholar 

  11. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: a data-driven neuron pruning approach towards efficient deep architectures. arXiv preprintarXiv:1607.03250 (2016)

  12. Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 304–320 (2018)

    Google Scholar 

  13. Huang, Z., Liang, S., Liang, M., He, W., Yang, H.: Efficient attention network: Accelerate attention by searching where to plug. arXiv preprintarXiv:2011.14058 (2020)

  14. Huang, Z., Liang, S., Liang, M., Yang, H.: Dianet: dense-and-implicit attention network. arXiv preprintarXiv:1905.10671 (2019)

  15. Huang, Z., Wang, X., Luo, P.: Convolution-weight-distribution assumption: Rethinking the criteria of channel pruning. arXiv preprintarXiv:2004.11627 (2020)

  16. Junior, F.E.F., Yen, G.G.: Pruning deep neural networks architectures with evolution strategy. arXiv preprintarXiv:1912.11527 (2019)

  17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  18. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprintarXiv:1608.08710 (2016)

  19. Liang, S., Huang, Z., Liang, M., Yang, H.: Instance enhancement batch normalization: an adaptive regulator of batch noise. In: AAAI, pp. 4819–4827 (2020)

    Google Scholar 

  20. Liang, S., Khoo, Y., Yang, H.: Drop-activation: implicit parameter reduction and harmonious regularization. Commun. Appl. Math. Comput.3(2), 293–311 (2021)

    Article MathSciNet  Google Scholar 

  21. Liu, Z., et al.: Metapruning: meta learning for automatic neural network channel pruning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3296–3305 (2019)

    Google Scholar 

  22. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2736–2744 (2017)

    Google Scholar 

  23. Luo, J.H., Wu, J.: An entropy-based pruning method for cnn compression. arXiv preprintarXiv:1706.05791 (2017)

  24. Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural network compression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5058–5066 (2017)

    Google Scholar 

  25. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation for neural network pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11264–11272 (2019)

    Google Scholar 

  26. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. arXiv preprintarXiv:1611.06440 (2016)

  27. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

    Google Scholar 

  28. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Kurakin, A.: Large-scale evolution of image classifiers. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2902–2911. JMLR. org (2017)

    Google Scholar 

  29. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis.115(3), 211–252 (2015).https://doi.org/10.1007/s11263-015-0816-y

    Article MathSciNet  Google Scholar 

  30. C Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  31. Sedgwick, P.: Spearman’s rank correlation coefficient. Bmj349, g7327 (2014)

    Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556 (2014)

  33. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca Raton (2012)

    Google Scholar 

Download references

Acknowledgments

S. L. and H. Y. were partially supported by the NSF grant DMS-1945029 and the NVIDIA GPU grant.

Author information

Authors and Affiliations

  1. Nanyang Technological University, Singapore, Singapore

    Wei He

  2. Tsinghua University, Beijing, China

    Zhongzhan Huang

  3. Northwestern University, Evanston, USA

    Mingfu Liang

  4. Purdue University, West Lafayette, USA

    Senwei Liang & Haizhao Yang

Authors
  1. Wei He

    You can also search for this author inPubMed Google Scholar

  2. Zhongzhan Huang

    You can also search for this author inPubMed Google Scholar

  3. Mingfu Liang

    You can also search for this author inPubMed Google Scholar

  4. Senwei Liang

    You can also search for this author inPubMed Google Scholar

  5. Haizhao Yang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toHaizhao Yang.

Editor information

Editors and Affiliations

  1. Comenius University in Bratislava, Bratislava, Slovakia

    Igor Farkaš

  2. iMotions A/S, Copenhagen, Denmark

    Paolo Masulli

  3. University of Tübingen, Tübingen, Baden-Württemberg, Germany

    Sebastian Otte

  4. Universität Hamburg, Hamburg, Germany

    Stefan Wermter

Rights and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, W., Huang, Z., Liang, M., Liang, S., Yang, H. (2021). Blending Pruning Criteria for Convolutional Neural Networks. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12894. Springer, Cham. https://doi.org/10.1007/978-3-030-86380-7_1

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp